
A Christian Analysis of Gabriel’s “Mob Software”

Thomas VanDrunen
Wheaton College

Thomas.VanDrunen@wheaton.edu

“At the risk of sounding blasphemous, Jesus doesn’t have much do to with linked
data structures.”

— Student course evaluation comment, in response to “Did the teacher successfully
integrate the subject matter with your Christian faith?”

It is difficult to convince students that integration of the Christian faith in computer science
is possible, apart from very general ethical questions. I can sympathize, because I was once un-
convinced. My undergraduate education at Calvin College was founded on such ideas as “there is
not a square inch in the whole domain of our human existence over which Christ, who is Sovereign
over all, does not cry: ‘Mine!’ ” (Kuyper, 1998, pg 488). I could see no clear understanding, how-
ever, of how the Christian faith shaped computer science or its cognate activities, such as computer
programming.

In October 2000, I attended the conference OOPSLA (Object-Oriented Programming, Lan-
guages, Systems, and Applications) where I heard Richard Gabriel give a keynote address, “Mob
Software: The Erotic Life of Code,” simultaneously published as an essay (Gabriel, 2000). In it,
Gabriel proposed a vision for software creation and use where no source code is proprietary and
nothing is master-planned. According to the proposal, a mob of programmers should be working
on software; this will bring computing to the masses, promote programming as art, and produce
a greater diversity of good software. This vision, he claims, goes farther than the “open-source
software” movement already in place.

The talk contained a fascinating sweep through such diverse fields as poetry, biology, ar-
chitecture, and economics, from which Gabriel produced illustrations and support for his critique
of current modes of software production and his vision for change. The audience showed its en-
thusiasm with a standing ovation. I too found many things attractive in his hopes for the field of
computer science in general and software development in particular. What was most interesting
to me, however, was how Gabriel’s understanding of software development had grown from his
presuppositions about the world—and that those presuppositions were unbiblical.

Gabriel was integrating his faith with computer science. That faith was in the essential
chaos in the universe and the accomplishments of collective human effort. The route from his
presuppositions to conclusions about software development is long and, in some places, subtle.
Nevertheless it is clear that his view of his field is shaped by his starting point. Perhaps an in-
vestigation of that route would illuminate how my presuppositions do—or should—shape my own
understanding of computer science.

1

Were the conclusions he drew dangerous for a Christian to accept? Or, by common grace
insights, is his proposal or something like it an effort in which a Christian can participate? This
paper traces the source of Gabriel’s ideas by examining the authorities he cites and how he uses
them and evaluates their validity on their own terms. It then considers what basic elements we can
identify in a Christian’s participation in software development, including what in Gabriel’s essay
and proposal are useful to a Christian and not in conflict to biblical thinking. Similarly, it identifies
what a Christian must deny in Gabriel’s proposal. It concludes with suggestions for Christian
participation in software development in the world.

General outline of Gabriel’s essay. Gabriel’s essay criticizes widespread modes of software
development. He describes how the software industry, in its greed for profits, has made informa-
tion on how their software works—the “source code,” described later (Section 3.2, page 15)—
proprietary. This has prevented the development of a body of software literature, source code to
which many people can learn from, modify, and contribute. This, he claims, has led to isolation of
software developers (since one interacts only with developers at the same company) and duplicated
efforts. It has also taken the development of software out of the hands of those who will use the
software. This stifles the training of more programmers, and it has restricted the variety of uses to
which computing can be put. Gabriel’s problem statement is, “[T]he ways we’ve created to build
software matches less and less well the way that people work effectively” (Gabriel, 2000, pg 1).

Gabriel believes the solution is for software to be developed by what he calls a “mob”
of programmers—large numbers of people, drawn from those who will be using the software, all
making small contributions, modifying and sharing software from an evolving pool of code, a body
of software literature. His thesis is, “The way out of this predicament is this simple: Set up a fairly
clear architectural direction [for a new piece of software], produce a decent first cut at some of the
functionality, let loose the source code, and then turn it over to a mob” (Gabriel, 2000, pg 3).

I will explain and, in some cases, critique Gabriel’s claims by examining four themes in
his essay. The first has to do with order emerging from chaos. Gabriel quotes from authors who
describe how simple rules of local interaction can give rise to group behavior that would be difficult
to predict from the rules themselves. “Mob software” results from this emergent behavior of the
mob of programmers. Second, Gabriel talks throughout the essay of a “gift economy,” which
he contrasts with a commodity economy. The economic model of gift exchange is necessary for
mob software because mob software requires participants to share their code freely. Gabriel also
is advocating viewing software more as art than as engineering, and in Gabriel’s presentation the
gift economy is the proper mode of exchange for art. The third theme also connects software to
art, as Gabriel discusses the duende, a personification of sudden inspiration. Gabriel uses this to
contrast his vision with the highly-structured approach to programming taught in schools. Finally,
Gabriel’s essay contains many references to an earlier time in the history of computing which
looked more like the mob-software approach, and it contains evidence that we are already seeing
the work of the mob on the rise.

General context for Gabriel’s essay OOPSLA, the conference at which Gabriel gave this talk,
is notable in that it has a strong constituency from both academia and industry. The sessions for
technical papers are respected academically, but many attendees to the conference do not go to any

2

of the technical paper sessions, going instead to the practitioner forums, workshops and tutorials,
and informal talks. The result is that the conference serves as a meeting ground between academics
and professionals. Gabriel plays prominently at OOPSLA; in the years since the talk he has served
both as program chair (2005) and conference chair (2007).

One influence for quite a bit of Gabriel’s thinking is architect Christopher Alexander.
Alexander and his collaborators described what he calls the “timeless way” of building in a se-
ries of books (Alexander, 1979; Alexander et al., 1977). The main idea is that the best way to
produce good, usable, and “alive” buildings is to have the users of the building involved in the
planning and construction process and that the buildings should arise from piecemeal growth.
Alexander believes that this is how construction historically has been done, with the modern ap-
proach of professionals planning with blueprints being a recent disruption of this timeless way. The
integrity of the building and even of neighborhoods and larger communities is preserved because
participants in the building process will share a common “language” of patterns, where a pattern is
general solution to a common problem that is implemented in many ways. Patterns that appear in
Alexander’s A Pattern Language range from T-Junctions (the roadway should be laid out to avoid
four-way intersections) to Alcoves (a large, common room should have small spaces at its edges
from semi-privacy) (Alexander et al., 1977).

Whenever I meet architects, I ask them what they think of Alexander’s ideas. Invariably,
they have not even heard of him. The software development world, however, has imported his
ideas enthusiastically. Most notably, the book Design Patterns by Gamma et al catalogs a pat-
tern language for common solutions in software design (Gamma et al., 1995). These patterns are
analogous to Alexander’s architectural patterns in that they are general solutions that are reused in
many contexts in the building of software. This pattern-language approach to building software is
well-known to OOPSLA attendees; two of the coauthors of Design Patterns have each served both
as conference chair and program chair, and Christopher Alexander himself gave a keynote talk at
OOPSLA in 1996.

1 Theme: Chaos in nature and emergent activity

I want to begin by inspecting sources Gabriel quotes about biology in particular and the natural
universe in general; specifically he cites the work of Lewis Thomas, Stewart Kauffman, and Joshua
Epstein and Robert Axtell. I believe this most clearly shows his understanding of the world, and
we will see how his critique of current modes of software production and his proposal of mob
software fit into this.

1.1 Context

Lewis Thomas on cells. Lewis Thomas was a physician who wrote essays relating biological
topics to many areas. His book The Lives of a Cell (Thomas, 1974) is a collection of essays
centered around the observation that the pattern of cellular life (many cells—which in some ways
could be viewed as organisms in their own right—together function as an organism) appears in
other areas of nature. An example he frequently uses is that of social insects such as ants: an

3

ant colony acts like an organism, with the individual ants as cells. The essay “On Societies as
Organisms,” from which Gabriel quotes, says: “A solitary ant, afield, cannot be considered to have
much of anything on his mind. . . It is only when you watch the dense mass of thousands of ants,
crowded together around the Hill, blackening the ground, that you begin to see the whole beast,
and now you observe it thinking, planning, calculating” (Thomas, 1974, pg 12). In this same
essay, Thomas considers the same phenomenon to occur in human societies, such as the scientific
community. “We like to think of exploring in science as a lonely, meditative business, and so it
is in the first stages, but always, sooner or later, before the enterprise reaches completion, as we
explore, we call to each other, communicate, publish, send letters to the editor, present papers, cry
out on finding” (Thomas, 1974, pg 15).

Stuart Kauffman on autocatalytic sets. Stuart Kauffman—also a medical doctor by training but
more recently a researcher in genetics and complexity theory—takes this idea further. In his book
At Home in the Universe (Kauffman, 1995), he argues that self-organization emerging out of chaos
is part of the fundamental laws of the universe. He proposes understanding many phenomena in the
universe in terms of “autocatalytic sets.” Kauffman finds examples of autocatalysis in many fields,
but the most important (and the field from which the term autocatalysis was taken) is chemistry:

Many chemical reactions proceed only with great difficulty. Given a long expanse
of time, a few molecules of A might combine with molecules of B to make C. But
in the presence of a catalyst, another molecule we’ll call D, the reaction catches
fire and proceeds very much faster. . . . Catalysts such as enzymes speed up chemi-
cal reactions that might otherwise occur, but only extremely slowly. What I call a
collectively autocatalytic system is one in which the molecules speed up the very
reactions by which they themselves are formed. (Kauffman, 1995, pg 49)

The importance of this idea lies in its potential, in Kauffman’s view, of explaining mysteries
of the origins of life. The chemical system in a cell is an autocatalytic set. “At its heart, a living or-
ganism is a system of chemicals that has the capacity to catalyze its own reproduction” (Kauffman,
1995, pg 49). Kauffman cites scientists who calculate that the chances that simple living things
(for example, the simplest bacterium of which we know) being assembled from prebiotic material
is improbably low, that the age of the universe is too small to account for it. “[T]o duplicate a
bacterium. . . it would be necessary to assemble about 2000 functioning enzymes. The odds against
this would be . . . 1 in 1040000 . . . [which is] unthinkably improbable” (Kauffman, 1995, pg 44).

The solution, Kauffman contends, is that these calculations overlook the fundamental like-
lihood of autocatalysis. These scientists “have failed to appreciate the power of self-organization.
. . . [T]here are compelling reasons to believe that whenever a collection of chemicals contains
enough different kinds of molecules, a metabolism will crystallize from the broth” (Kauffman,
1995, pg 45). Kauffman sees this not only in the origin of life but in the history of evolution. He
feels that natural selection alone cannot account for what evolution appears to have accomplished.
“[I]f selection, working on random variations, is the sole source of order, then we stand twofold
stunned: stunned because the order is so very magnificent; stunned because the order must be so
very unexpected, so rare, so precious” (Kauffman, 1995, pg 98). Again, he proposes that self-

4

organization provides the explanation. “Only those systems that are able to organize themselves
spontaneously may be able to evolve further” (Kauffman, 1995, pg 185).

For Kauffman, fundamental laws of self-organization would do more than explain certain
parts of paleontology. Kauffman feels that science has removed our traditional sense of value
and purpose. “Paradise has been lost, not to sin, but to science. Once. . . we of the West believed
ourselves the chosen of God, made in his image, keeping his word in a creation wrought by his
love for us. . . . [Now] we are but accidents, we’re told. Purpose and value are ours alone to make.
. . . We bustle, but are no longer at home in the ancient sense” (Kauffman, 1995, pg 4). In its place,
Kauffman “hold[s] the hope that what some are calling the new sciences of complexity may help
us find anew our place in the universe, that through this new science, we may recover our sense of
worth, our sense of the sacred. . . ” (Kauffman, 1995, pg 4–5). Again, “I found myself hoping that
large networks of genes would spontaneously exhibit the order necessary for ontogeny. That there
was a sacredness, a law—something natural and inevitable about us” (Kauffman, 1995, pg 99).

Epstein and Axtell and artificial agents. Gabriel also makes reference to a set of experiments
in what we may call artificial sociology. Complexity researchers Joshua Epstein and Robert Axtell
created a virtual world called Sugarscape inhabited by “agents” and containing a resource (“sugar”)
distributed unevenly. The agents have a visual acuity, a metabolism, and a carrying capacity; based
on a set of simple rules, the agents move about the world looking for, storing, and consuming
sugar, without which they starve. The researchers observe identifiable patterns of activity among
the agents, such as group migrations and competition for resources. Variations on the simulation
are made by making each agent a member of one of two tribes, and giving them a preference for
proximity to members of the same tribe or inciting the tribes to war on each other; by allowing
agents to reproduce (and, with that, adding the sexual transmission of attributes and the bequeath-
ing of stored sugar to the next generation); or introducing a second resource (“spice”) and allowing
the agents to engage in trade between the two resources. The thrust of the work is a demonstra-
tion of complex global behavior emerging from simple rules executed locally. (Epstein and Axtell,
1996)

1.2 Content

In the opening paragraphs, Gabriel says, “I’ve despaired that the ways we’ve created to build
software matches less and less well the ways that people work effectively” (Gabriel, 2000, pg
1). Moreover, “Every piece of software built requires tremendous attention to detail and endless
fiddling to get right” (Gabriel, 2000, pg 3). His solution (and thesis) is that the right way to build
large pieces of software is to “set up a fairly clear architectural direction, produce a decent first cut
at some of the functionality, let loose the source code, and then turn it over to a mob” (Gabriel,
2000, pg 3). Some of the technical details of what that means will be discussed later, such as
in Section 3.2. Our first concern is what Gabriel means by “the mob” and how he postulates that
this is the right way.

Gabriel claims, “One of the remarkable discoveries of recent times is that complex behavior
by a group of individuals requires only that each individual follow simple rules and the collective
behavior of the group [is] nowhere apparent in those rules” (Gabriel, 2000, pg 5). Lewis Thomas’s

5

observations about termites and the agents of Sugarscape demonstrate this. Gabriel concedes that
the real-world significance of experiments like Sugarscape is debatable. Its value, he says, is to di-
rect our attention to the boundary between order and chaos. “Between order and chaos, interesting
and unexpected combinations come about and last long enough to have repercussions” (Gabriel,
2000, pg 7).

Mob software is based on this principle. Many independent programmers would be work-
ing on a piece of software—modifying it, expanding it, and adapting it to their own needs. The
software produced would be the aggregate of their efforts. “What I’m talking about is the kind of
swarming activity we see exhibited by social insects, a kind of semi-chaotic self-organizing be-
havior . . . Mob artifacts include massive software, built by the multitudes. . . . Anyone can add to
it” (Gabriel, 2000, pg 18).

On this basis he finds fault in the current modes of producing software in that they are
rooted in a desire for order and assume master-planning. “Command-and-control systems are
based on the need for control, predictability, and order, things Stuart Kauffman says have no real
place in biologically based systems” (Gabriel, 2000, pg 9). Gabriel describes the avionics software
for the Space Shuttle, produced by 260 people working over 20 years, as the best the old way
of software development has to offer. The software is successful in that it has had a very low
occurrence of bugs, but because of design issues it is “an unrealistic model for future systems”
and has a cost so high it is justified only in that “we cannot afford to have deaths in the space
program” (Gabriel, 2000, pg 21). In contrast, “The mob-software theory is that this project needed
26000 programmers, not 260. The job could have taken less than a year, probably with better
quality, and a lot cheaper” (Gabriel, 2000, pg 21).

1.3 Critique

In Gabriel we have an example of worldview affecting programming. He believes there are funda-
mental laws of self-organization, order arising from chaos, and interesting things happening at the
boundary of order and chaos—or at least he finds that the most compelling available theory. His
description of “the ways that people work effectively” and the way we ought to be writing software
reflects what he believes about the universe. This calls for us to consider the validity of this view
of the world and the validity of its connection to software development.

Kauffman and meaning from chaos. Any talk on the theory of origins will arouse passion
among Christians. However, regardless of one’s opinion on the age of the earth, how much evolu-
tion occurred in the world becoming what it is today, or generally how we reconcile real or apparent
tension between scientific discoveries and the biblical narrative, there is a need to critique Stuart
Kauffman’s view of nature. He is explicit about his understanding that science has removed God
from giving meaning and purpose to our existence.

It is interesting that Kauffman seems to feel we have lost something important. He ex-
presses sympathy with some prescientific beliefs, that some of them were, in his view, the best
explanation of the world from the information available at the time. He freely uses biblical im-
ages, speaking about a “real” Garden of Eden (the place in eastern Africa where homo sapiens is

6

supposed to have originated (Kauffman, 1995, pg 3)) and a “real” Noah’s ark (a thought experi-
ment about what would happen if the proteins of all living things were allowed to mix in a highly
concentrated solution (Kauffman, 1995, pg 113 et seq)). He even employs a concept of God in
describing the chaotic aspects of nature too complex for human minds to penetrate. “Only God has
the wisdom to understand the final law, the throws of the quantum dice. Only God can foretell the
future. We, myopic after 3.45 billion years of design, cannot” (Kauffman, 1995, pg 29). Taken out
of context, it sounds like something many Christians (at least those with an “old earth” view) could
accept. But Kauffman’s work is about a rediscovery of the sacred, and it amounts to a proposal of
the laws of self-organization as a new deity. At the very least it is what he proposes to redefine our
place and purpose, our being at home in the universe.

Being no natural scientist, I cannot deal fairly with the biology or chemistry, either to
critique it or to find what to redeem from it. At least it can be said that Kauffman’s work takes the
form of a proposal, implying it is unconfirmed. In the subtitle of the book this is called the search
for laws of self-organization.

More vital is whether this view of the universe—valid or not—appropriately transfers to the
production of software. Gabriel’s assumption is that a biologically-based system is the appropriate
model. At least this is what he has in mind with mob software.

Evaluating emergence. One thing we find in common with Lewis Thomas’s ants, Kauffman’s
autocatalytic sets of proteins, and the agents inhabiting Sugarscape is that they all lack intelligence.
Proteins react based on the chemical properties. The movements of Sugarscape agents are calcu-
lated based on a set of rules. It might sound hasty to claim that ants have no intelligence, but at least
in Thomas’s view, “A solitary ant . . . with only a few neurons strung together by fibers,. . . can’t be
imagined to have a mind at all, much less a thought” (Thomas, 1974, pg 12). With more advanced
individuals, we need to take into consideration the influence of the individual. Consider Gabriel’s
claim, which I believe to be incorrect, that the “simple but beautiful and graceful flocking patterns
of birds and schools of fish” (Gabriel, 2000, pg 5) can be generated by three rules:

• Each individual shall steer toward the average position of its neighbors.

• Each individual shall adjust its speed to match its neighbors.

• Each individual shall endeavor to not bump into anything.

I have implemented these rules in my own simulation software (this simulation is available
for execution or download at an accompanying website (VanDrunen, 2009)). Like Sugarscape,
this software implements a collection of agents inhabiting a grid. Each individual has a speed and
direction, and from these the simulation calculates the next grid position into which the individual
moves for every cycle of the simulation’s running time. Gabriel’s rules are a bit vague, but I believe
I have interpreted them fairly: Before each move, each individual scans the neighborhood around
it and gradually adjusts its speed to the average of the agents near it; likewise it gradually adjusts
its direction to what it calculates as the center of mass of the agents near it. Although the rules
stipulate that individuals should “endeavor” not to hit each other, the means of avoiding collisions
is unspecified. I can think of two interpretations of the rule. If the position the agent calculates

7

for its next move is already occupied, it simply can skip a turn and not move at all, picking up
again where the process left off in the next simulation cycle. A more realistic interpretation, in
my opinion, is that the agent should decrease its speed until it calculates a next position that is
unoccupied.

In neither of these does a flocking pattern emerge. In the first interpretation, there is a
general tendency for the agents to clump together into a few groups of agents, but the motion of the
groups in general and the motion of agents within the groups remain chaotic. In the interpretation
where the agents slow down to avoid collisions, since agents imitate the speeds of their neighbors,
the decrease of speed spreads through the entire system like entropy. Eventually all agents stop
moving altogether.

There are several parts of flock and school motion that these rules fail to capture. To begin
with, the movements of birds and fish have some sort of purpose—finding food, escaping from a
predator, or migrating, for example. (Gabriel generally refers to research that has been done on an-
imations of flocks and schools. Although he does not cite any particular source, there are extended
bibliographies of this literature available (Reynolds, 2001). One seminal paper in particular dis-
cusses how the rules defining the “steering behaviors” of the individuals are combined to achieve
goals, such avoiding obstacles or moving toward a location (Reynolds, 1999).) Second, individual
birds and fish are capable of independent thought—or if that sounds too anthropomorphic, they are
capable of independent response to stimulus. This is related to the problem of the rules lacking a
purpose of movement; if one individual sees food or a predator, its sudden change of speed and
direction will alert the rest of the group. In other words, the rules given by Gabriel describe only
the conforming aspect of group behavior. In reality, there is a tension between independent and
conforming tendencies, and the flock patterns emerge from the interaction between the two.

Mob activity. On one hand this examination of flocking rules is nit-picking on Gabriel’s exam-
ple, but I think it reflects the difficulty of his applying the principle to mob software. His exam-
ples of “mob activity” among people—the making of the Oxford English Dictionary, cathedral-
building, and open source software discussed later—all had oversight, master-planning of some
sort. They did not emerge merely from agents acting locally under simple rules which would self-
organize. The history of the Internet provides another example. In the 1960’s and into the early
1970’s, many computing research centers were developing computer networks with varied tech-
nology and design principles and using different protocols for exchanging information between
machines. Some networking sites were similar enough that they could be connected to each other
through a single network, the ARPANET. In 1973, various interested parties met to design a new
network protocol which would transform the ARPANET into what we now know as the Internet,
which would allow very different networks to be connected. Research on the various individual
network technologies was something like a swarm, but it required a central effort for any sort of
coherence. Janet Abbate says in her history of the Internet, “Establishing a single universal proto-
col was not the only possible approach to building an internet. One obvious alternative would have
been to continue using different host protocols in different networks and create some mechanism
for translating between them. . . . [S]uch a design would not scale up gracefully: if the number
of networks being connected were to grow large, the translation requirements would become un-
workable” (Abbate, 1999, pg 128). These examples differ from a swarm which self-organizes

8

without central coordination. “The locusts have no king, yet all of them march in rank” (Prov
30:27, ESV). It is hard to imagine that efforts like the OED or the Internet infrastructure would
have converged without oversight. (To be fair, Gabriel does not believe mob software projects need
to converge (Gabriel, 2000, pg 26).)

Even when swarm or mob activity does converge, there is no guarantee that it will converge
to something desirable. The connotations of the word mob imply something unruly and destructive.
Gabriel limits his use of the word by quoting from the OED, “A multitude or aggregation of persons
regarded as not individually important” (Gabriel, 2000, pg 2). Interestingly, this definition has been
removed from the OED’s Draft Revision 2009 (Oxford English Dictionary, 2009). Moreover, it
ignores how the mob can serve as a cover for vice and foolishness. As Kierkegaard said, “[T]here
is no place, not even one most disgustingly dedicated to lust and vice, where a human being is more
easily corrupted—than in the crowd. . . . [T]he crowd is untruth. It either produces impenitence and
irresponsibility or it weakens the individual’s sense of responsibility by placing it in a fractional
category” (Kierkegaard, 1999a).

Gabriel’s boldest claim for the power of mob software is that a mob of volunteers could
have written the space shuttle software, in implied analogy with the OED project. “The job could
have taken less than a year, probably with better quality, and a lot cheaper” (Gabriel, 2000, pg
21). Perhaps a private spacecraft developer one day will be able to test this theory. For now we
can note that the space shuttle software was one of the most complex pieces of software built
at the time, produced using an innovative (for its time) development process, in a tight release
cycle (17 releases over 31 months), with stringent yet evolving requirements, and many layers of
oversight and accountability (Madden and Rone, 1984). The OED volunteers primarily gathered
information; the dictionary itself was produced by a professional committee (Oxford University
Press, 2009). Their work was hardly comparable to the sort of disciplined testing and verification
done by the shuttle software developers.

In summary, the emergence of patterns from agents acting locally under simple rules is a
fascinating subject. However, Gabriel’s projections from the behavior of social insects to potential
achievements of mob software are doubtful.

2 Theme: Gift economy vs commodity economy

The second theme in Gabriel’s essay that I identify is concerned with the economic model of
software. A contrast is drawn between a gift economy and a commodity economy. The current
mode in which software is produced and distributed is a commodity economy. The work of the
mob, in Gabriel’s view, fosters and requires a gift economy, and it is under this model that software,
too, would flourish.

2.1 Context

Gabriel’s quotations in “Mob Software” show that on this topic he is primarily informed by Lewis
Hyde in his book The Gift (Hyde, 1983). It is difficult to say precisely what Lewis Hyde is by
training or practice. An Internet search reveals that his academic credentials are in sociology

9

and comparative literature and that he has held professorships in “Art and Politics” and in Creative
Writing (Wikipedia, 2009). In his own words, he has “tried to make [his] way as a poet, a translator,
and a sort of ‘scholar without institution’ ” (Hyde, 1983, pg xiii). In the course of the book, he
discusses anthropology, folklore, theology, and economics.

The gift economy. In a gift economy, the circulation of goods happens as a gift exchange. This
exchanging of gifts creates a bond between the giver and the receiver. The expectation is that
the gift will be passed on and thus will circulate. The bonds of gift exchange create and sustain
communities and are the basis of interactions between communities. Prosperity is found in the
distribution of property, not in its accumulation. In a commodity economy, goods are transferred
for profit between autonomous people, forming no bond. “The commodity [is] an alienable object
exchanged between two transactors in a state of mutual independence. . . [the gift is] an inalienable
thing or person exchanged between two reciprocally dependent transactors” (Morris, 1986, pg 2).

Hyde illustrates this with a rich set of examples, such as stories about tribal societies. “The
Indians of the Northwest American coast also give gifts in order to ‘make a name’ for themselves,
to earn prestige.. . . The man who has emptied himself with giving has the highest name. When
we say that someone has made a name for himself, we think of Onassis or J. P. Morgan or H. L.
Hunt, men who got rich. . . [Among the Kwakiutl tribe,] a man makes a name for himself by letting
wealth slip through his fingers” (Hyde, 1983, pg 78–79). He finds the concept in the anarchist ritual
of destroying records of properties holdings (such as done by the Anabaptists in Münster (Hyde,
1983, pg 87)) and to a certain extent in the scientific community’s exchange of ideas (Hyde, 1983,
pg 79).

Items or resources distributed or circulated as gifts never become exhausted. This, Hyde
says, is “a paradox of gift exchange: when the gift is used, it is not used up. Quite the opposite
in fact: the gift that is not used will be lost, while the one that is passed along remains abundant.
. . . Gifts are a class of property whose value lies only in their use and which literally cease to exist
as gifts if they are not constantly consumed. When gifts are sold, they change their nature as much
as water changes when it freezes” (Hyde, 1983, pg 21).

The hoarding of gifts takes away this attribute and puts the receiver at odds with the com-
munity. “One man’s gift [, the Native American mind-set is,] must not be another man’s cap-
ital” (Hyde, 1983, pg 4). Quoting Wendy James, “any wealth transferred from one subclan to
another, whether animals, grain, or money, is in the nature of a gift, and should be consumed, and
not invested for growth. If such transferred wealth is added to the subclan’s capital [cattle in this
case] and kept for growth and investment, the subclan is regarded as being in an immoral relation
of debt to the donors of the original gift” (Hyde, 1983, pg 4). The gift economy works under the
assumptions of abundance, the commodity economy under those of scarcity (Hyde, 1983, pg 19).

Art and the gift economy. Hyde’s main concern, however, is with art and how the commodi-
fication of art (that is, turning it into a commodity) destroys art because art flourishes as a gift.
“The more we allow such commodity art to define and control our gifts, the less gifted we will
become, as individuals and as a society. The true commerce of art is a gift exchange, and where
that commerce can proceed on its own terms we shall be heirs to the fruits of gift exchange: in this
case, to a creative spirit whose fertility is not exhausted in use . . . ” (Hyde, 1983, pg 158).

10

In the quote given above, the word “gift” seems to be used equivocally. It can mean object
or artifact that is passed on, or it can mean artistic talent. Hyde is self-conscious about the apparent
equivocation. “There are several distinct senses of ‘gift’ that lie behind these ideas, but common
to each of them is the notation that a gift is a thing we do not get by our own efforts. . . . Thus we
rightly speak of ‘talent’ as a ‘gift,’ for although a talent can be perfected through an effort of the
will, no effort in the world can cause its initial appearance” (Hyde, 1983, pg xi–xii). Moreover, the
divine (or at least supernatural) is often assumed the originator of or is otherwise involved in the
cycle of gift-giving. Hyde finds examples of this both in tribal religions (Hyde, 1983, pg 26 et seq)
and the Bible (Hyde, 1983, pg 19–20).

Hyde contrasts the spirits of gift and commodity economies with the Greek words eros
and logos. In his mind, eros stand for imagination, logos for logic; eros for synthesis, logos for
analysis or dialectic; eros for bonding (including the bonding of people in a relationship), logos
for differentiating into parts. In this dichotomy, with eros we have gift exchange and with logos
market exchange. “If we say, as Marx suggested, that ‘logic is the money of the mind,’ then we
might add as a corollary that the imagination is its gift” (Hyde, 1983, pg 155). (The subtitle of
The Gift is “Imagination and the Erotic Life of Property.” Although a provocative title, the content
shows that Hyde is not using eros in a specifically sexual sense.)

In addition to Hyde, Gabriel’s understanding of the gift economy is informed by a paper
by classicist and ancient historian Ian Morris, “Gift and Commodity in Archaic Greece” (Morris,
1986). He gives evidence that the gift economy and commodity economy coexisted for centuries
in ancient Greece as it transitioned from a clan society to one of state and empire. Hyde, in fact,
concedes at the end of his book that a similar coexistence is realistic. “My position has changed
somewhat. I still believe that the primary commerce of art is a gift exchange. . . But I no longer
feel the poles of this dichotomy to be so strongly opposed. . . . [G]ift exchange and the market need
not be wholly separate spheres” (Hyde, 1983, pg 273). (In 2008, Hyde was at least comfortable
enough with the commercial world to write an article updating The Gift appearing in a magazine
section of the Wall Street Journal which contained mostly high-end advertising (Hyde, 2008).)

2.2 Content

In Gabriel’s description of mob software, one of its primary differences from other modes is its
economic aspect. Mob software uses and requires a gift exchange, whereas our current models of
software development are rooted in the commodification of software. In Section 4, I will analyze
in more detail Gabriel’s claims about how the current commodification came about and what its
effects are. In brief, it stopped software from flourishing, meaning both that there grew no respect
for it (particularly as an art form) and that the variety of uses of computing was stifled.

This is related to the commodity economy’s arising from scarcity. “The history of comput-
ing is rife with resource limitations,” primarily insufficient computer speed and memory, and the
undermanning of software development projects (Gabriel, 2000, pg 13–14). Software knowledge
as a commodity is something proprietary, something not shared by a community, and this situation
forces people to work in isolation. “Because of this we’ve managed to build only very small pieces
of software, and even those are horribly error-ridden. . . . [B]ecause development has been done
primarily in a landscape riddled by many isolated islands of similar or identical activities, we have,

11

over the last 40–50 years, written the same code over and over. . . . Are Word, Excel, and Pow-
erpoint really the best possible programs in those categories?” (Gabriel, 2000, pg 14). Certainly
proprietary code is shared property among those working in a corporate development team, but it
is not common to the larger community of software developers and users. More sharing would,
in Gabriel’s view, allow more experimentation and diversification, and thus true alternatives to
dominant products like Microsoft’s Office suite.

In Gabriel’s view, scarcity is not only a condition which, when it happens to occur, en-
courages commodification. Scarcity like this is also something that those profiting in a commodity
economy have an incentive to maintain. “[T]he commodity economy. . . depends on scarcity. Its
most famous law is that of ‘diminishing returns,’ whose working requires a fixed supply. Scarcity
of material or scarcity of competitors make high profit margins” (Gabriel, 2000, pg 23). “When
computers were commoditized, the resource limitations inherent in software development became
an opportunity for exploitation, and any relief to those limitations meant less wealth to go around.
Draw your own conclusions” (Gabriel, 2000, pg 14).

One of the most important resources in software development is skilled programmers.
Gabriel mentions a question posed by the open source community (a movement I will describe
in Section 3.2 and which Gabriel believes shows some aspects of mob software but does not go far
enough): “What if what once was scarce is now abundant?” (Gabriel, 2000, pg 17) The meaning
is, what if there were more people with significant skill in developing software? How would that
change how software is developed and distributed and to what uses software is put? In Gabriel’s
view, mob software and this sort of abundance would mutually reinforce each other. In describ-
ing a future characterized by mob software, Gabriel says, “Mentoring circles and other forms of
workshop are the mainstay of software development education. There are hundreds of millions of
programmers” (Gabriel, 2000, pg 28) and “Resource scarceness created by artificial boundaries no
longer exist, and in an era of abundance, excess thrives” (Gabriel, 2000, pg 29).

2.3 Critique

Gabriel’s unspoken premise is that it is reasonable to think of software as art, since it is to the
“commerce of the creative spirit” that Lewis Hyde applies the gift economy. To be fair, Gabriel’s
audience may know of this premise, since Gabriel has talked about it elsewhere, for example his
proposal for a Master of Fine Arts in Software degree (Gabriel, 2003). I do not find that way of
thinking about software unreasonable, but it certainly is incomplete. The places where the analogy
breaks down call into question the strength of Gabriel’s argument that the commodification of
software is behind (and necessarily so) Gabriel’s opening claim that “the full expanse of what
computing could do—to enhance human life, to foster our creativity and mental and physical
comfort, to liberate us from isolation from knowledge, art, literature, and human contact—is left
out of our vision” (Gabriel, 2000, pg 1).

A concrete version of Hyde’s understanding of commodification ruining art is found in
Hyde’s opening example: a drugstore romance novel series intentionally formulated to fit the in-
terests of customers found by market research (Hyde, 1983, pg xi). Hyde rightly expects his readers
to agree that books produced this way will never be high literature, and he sees this as degrading to
the novel as an art form. It is not clear, however, that the commodification of software is analogous.

12

One would rather expect that market research would be useful in designing software intended for
a general audience.

Some of Gabriel’s examples of a gift economy are suspect. After quoting from Ian Morris,
Gabriel says, “In a typical gift exchange situation, a patron would provide food and shelter to a
poet in exchange for poems about the patron” (Gabriel, 2000, pg 22). The context implies that
ancient Greece is the setting for this example. However, Morris never uses artistic patronage as
an example of gift exchange. His paper has in view gift-giving between chiefs for making and
preserving alliances. Elsewhere Gabriel says, “A healthy Western family operates on a gift econ-
omy” (Gabriel, 2000, pg 23). Certainly one cannot imagine a family impersonally exchanging
commodities, but that does not mean a gift economy is an appropriate model either. For example,
in the gift economies described by Hyde, it is unethical to turn a gift into capital. In my experi-
ence, parents help their adult children through interest-free loans and similar measures for the very
purpose of allowing them to build capital (the proverbial “nest egg”) or to buy a house or pay off
debts.

I believe Gabriel’s application of the gift economy to software development is of some use
in describing the workings of the open source and free software community—described later—
but does not prove that its absence in the software industry has inhibited the production of good
software.

3 The duende

One of the most mysterious aspects of Gabriel’s essay is his discussion about the need for program-
mers to have duende or to battle with the duende. He borrows this duende concept from theories
about certain kinds of Spanish folk music and art. The Spanish poet Federico Garcı́a Lorca spoke
and wrote about the duende as a source of artistic inspiration. Gabriel borrows this concept to
exhort software developers to more ambitious programming.

3.1 Context

The concept of duende is difficult to pin down. It is a personification of a kind of spirit of artistic
spontaneity. Etymologically, it comes from duen de casa, “master of the house.” Shortened to
duende, the term refers to various kinds of genies or elves in Spanish and Latin American folklore.
Originally it seems to have been a sort of playful sprite that would mysteriously break or hide
household objects (Maurer, 1998, pg ix). It seems that in the confluence of musical and other
artistic styles found in the region of Andalusia (Roma and Moorish influences play strongly there),
duende took on the meaning of a spirit that would creep into an artist during a performance.

Christopher Maurer describes Garcı́a Lorca’s duende as “irrationality, earthiness, a height-
ened awareness of death, and a dash of the diabolical. The duende is a demonic earth spirit who
helps the artist see the limitations of intelligence” (Maurer, 1998, pg ix). To understand what is
meant with terms like “diabolical” and “demonic,” Garcı́a Lorca seems to want to distinguish the
duende from the devil as understood in the Christian tradition. “I do not want anyone to confuse
the duende with the theological demon of doubt at whom Luther. . . hurled a pot of ink. . . , nor with

13

the destructive and rather stupid Catholic devil. . . ” (Garcı́a Lorca, 1998, pg 49–50). I take what he
says to mean that the duende is something desirable, not just something that haunts; it teases rather
than oppresses, and it is not something we need to mock in order to calm our fears.

In describing the duende, Garcı́a Lorca contrasts it with other conceptions of inspiration
that have been personified by supernatural beings, in particular angels and muses. Angels, in
Garcı́a Lorca’s view, guide, defend, and forewarn (or perhaps evangelize); he associates these
three functions with Raphael, Michael, and (the angel) Gabriel respectively. What characterizes
angels is that they are “ordering, and it is useless to resist their lights, for they beat their steel
wings in an atmosphere of predestination” (Garcı́a Lorca, 1998, pg 50). The muse is an intellectual
spirit, “but intelligence is often the enemy of poetry, because it limits too much. . . ” (Garcı́a Lorca,
1998, pg 51). Another difference is that “[T]he muse and angel come from outside us. . . but one
must awaken the duende in the remotest mansions of the blood” (Garcı́a Lorca, 1998, pg 50).
(Interestingly enough, Garcı́a Lorca finds the duende in some aspects of the Christian tradition: he
describes Teresa of Ávila as being full of the duende (Garcı́a Lorca, 1998, pg 58).)

The duende is contrasted with technical skill. Garcı́a Lorca quotes one artist critiquing an-
other with “You have a voice, you know the styles, but you will never triumph, because you have no
duende” (Garcı́a Lorca, 1998, pg 48). Again, Garcı́a Lorca says,“[I]t is not a question of ability but
of true, living style, of blood, of the most ancient culture, of spontaneous creation” (Garcı́a Lorca,
1998, pg 49). In fact, the duende opposes the orderly, disciplined approach one has been taught.
“[He] rejects all the sweet geometry we have learned, . . . he smashes styles. . . ” (Garcı́a Lorca,
1998, pg 51).

The artist has a battle with the duende, and the battle involves risks. The artist must in-
vite the duende to battle by taking the ultimate risk. “The duende does not come at all unless
he sees that death is possible. The duende must know beforehand that he can serenade death’s
house. . . ” (Garcı́a Lorca, 1998, pg 58). It is not immediately clear what Garcı́a Lorca means
by “the possibility of death.” His own illustrations sound cartoonish: Without the duende, the
poet “forgets that ants could eat him or that a great arsenic lobster could fall suddenly on his
head” (Garcı́a Lorca, 1998, pg 51). Gabriel gives a corroborating quote from Christopher Alexan-
der by way of Stephen Grabow, “All the Japanese arts recognize the fact that, finally, you have to
meet the fear of death in order to do anything—landscape painting, flower arrangements, and so
on” (Grabow, 1983, pg 86). In context, Alexander’s comparison is between being a swordsmas-
ter and a flower arranger, and it sounds anticlimactic to the point of humor. However, Alexander
proceeds to put things more plainly,

[I]f you take the fear of humiliation. . . and you try to trace it, you realize that you
have a whole series of linkages in your mind which ultimately go back to the fear of
death. For example, if you are mocked you may lose your job, and if you lose your
job perhaps you will end up in the gutter. . . (Grabow, 1983, pg 86)

Perhaps this sort of fear is what Garcı́a Lorca has in mind and what the duende is conceived
as coming to challenge. That is at least how Gabriel interprets it (Gabriel, 2000, pg 8).

14

3.2 Content

The economy of gift exchange requires a source for the gift. In Lewis Hyde’s understanding of the
commerce of the creative spirit, the source is artistic talent, which Gabriel connects to the duende
of Garcı́a Lorca. This seems consistent with what Hyde says. He even refers to the duende at one
point where he describes how those marginalized from a commodity economy are better suited for
gift exchange:

A commodity is truly “used up” when it is sold because nothing about the exchange
assures its return. . . . Gifts that remain gifts can support an affluence of satisfaction,
even without numerical abundance. The mythology of the rich in the overproduc-
ing nations that the poor are in on some secret about satisfaction—black “soul,”
gypsy duende. . . —[has] a basis, for people who live in voluntary poverty or are
not capital-intensive do have more ready access to erotic forms of exchange that
are neither exhausting nor exhaustible and whose use assures their plenty. (Hyde,
1983, pg 23).

Gabriel introduces the duende to put a face on this source. “When you do battle with the
duende . . . you might find a gift, a gift of talent or insight. . . ” (Gabriel, 2000, pg 9). Near the
beginning of his essay, he hints at the duende as a necessary part of coming out of the software
development islands where Gabriel sees the commodity economy has put us: “The way out requires
just one thing from us—a strange, frightful thing—something slant. It is this: Find a way to fight
our fear of death” (Gabriel, 2000, pg 1). Participating in mob software takes on the risk of failure
and of scorn and rebuke from our colleagues.

The duende fits nicely into Gabriel’s understanding of order arising from chaos as a funda-
mental law of the universe. “Duende, poetry, and perhaps life itself and life in our works of artifice
are denizens of the boundary between order and chaos” (Gabriel, 2000, pg 9).

From this Gabriel critiques current modes of producing software, which spring from a
cowardly need for order. “Early computing practices evolved under the assumption that the only
uses for computers were military, scientific, and engineering computation—along with a small
need for building tools to support such activities” (Gabriel, 2000, pg 11). It was engineering and
science types, as opposed to, for example, artists, who defined how software production was done
and understood.

To understand what Gabriel is getting at in this context we must know something about
the languages used for composing software. The most basic, “assembly” or “machine” languages,
are directly interpreted by the computer hardware. Each kind of computer (say, each microchip
model from each chip manufacturer) has its own such language, but they all consist in simple
instructions for moving small chunks of data (say, one number or one alphanumeric character)
between memory locations or performing one arithmetic or logical operation. The instructions are
laid out in a linear fashion and executed one after the other except where broken up by instructions
to jump to a different position in the instruction sequence. “Higher level” programming languages
were invented (in part) in light of the difficulty of programming in assembly language. Fortran
was one of the earliest languages. It was designed for use by scientific and engineering concerns,
and while it still conceived a program as a sequence of instructions, it allowed programmers to

15

describe computational processes more succinctly; a small number of lines of Fortran could then
be translated into a large number of assembly language instructions. The programming language C
also conceives programs in essentially the same way as assembly language, but it came a bit later
than Fortran and was designed for the purpose of writing operating systems and other basic tools
for using the computer. Thus Fortran stands for Gabriel’s “military, scientific, and engineering
computation” and C for the “small need for building tools to support such activities.”

These assumptions and the orderliness they forced upon computing stifled more daring
exploration of computing. “The very architecture of almost every computer today is designed
to optimize the performance of Fortran programs and its operating-system-level sister, C. Further,
. . . nonstandard computational models were soundly rejected, snubbed, and even ridiculed” (Gabriel,
2000, pg 11). Along with these languages we have the rise of “software methodologies,” the disci-
plined, orderly way of designing, implementing, documenting, and testing software that one might
have learned in school. It came about as an attempt to mimic successful engineering practices
(like those found in the space program). “Software development methodologies evolved under this
regime along with a mythical belief in master planning. . . . Master planning feeds off the desire for
order, a desire born of our fear of failure, our fear of death” (Gabriel, 2000, pg 11).

Software is more like poetry, in Gabriel’s view. We cannot emulate NASA and expect
to get good software. Instead we must face our fear of failure and battle with the duende. This
leads into Gabriel’s cynicism towards programming education. If excellence in programming is
based more on the presence of the duende than in technical skill, then the effectiveness of software
education is limited. “Software skill is a gift from an unknown and unknowable source—perhaps
the skill is an artistic talent, perhaps there are parts of the process of writing software that can be
taught” (Gabriel, 2000, pg 30). I will take up Gabriel’s view of computer science education in
more detail in Section 4.

3.3 Critique

Gabriel’s use of Kauffman’s understanding of the world seems inherently naturalistic, even atheis-
tic. Yet in Kauffman we see a desire to reinvent the sacred. The duende appears to be a fitting god
for the world of chaos and order. Gabriel’s essay is really about how the programmer can worship
it. “When you do battle with the duende. . . you might find a gift, a gift of talent or insight that will
make you think, ‘Did I say that?’—‘Did I do that?’ Gifts like this are worth cultivating, even in
the software world” (Gabriel, 2000, pg 9).

Considered on its own terms, Gabriel’s challenge for the software world to loosen its cling-
ing to things that enforce order and to battle the duende sounds unrealistic. Garcı́a Lorca’s de-
scription of the duende contains examples of people whose battle with the duende prompts amaz-
ing performances despite a lack of technical skill. “Years ago, an eighty-year-old woman won
first prize at a dance contest. . . She was competing against beautiful women and young girls with
waists supple as water, but all she did was raise her arms, throw back her head, and stamp her
foot on the floor. In that gathering of muses and angels. . . who could have won but her moribund
duende” (Garcı́a Lorca, 1998, pg 54). To apply a duende-like idea to the composition of software,
however, presupposes a high level of technical skill to be already present in the programmer. A
computer program is not like a poem or a dance in this way; if the programmer is not able to pro-

16

duce something parsable in the programming language or cannot fit the instructions together in a
logical way, the program simply will not work.

Perhaps Gabriel considers the prerequisite of technical skill to be part of the problem, and
that it does not need to be this way. It might be that our programming languages and related
tools—so order-filled, not inviting to the duende, and designed with engineers in mind—keep the
masses away. “The current situation might feel fine to some of you, but suppose all computing
were based on the needs of tightrope walkers? Hard to imagine? What we’ve created was hard for
them to imagine” (Gabriel, 2000, pg 16–17). Gabriel asserts that the current situation is hard for
the masses to imagine, but does not help us in visualizing the alternative.

Gabriel claims that fear of failure and death prevented the flourishing of approaches to
software that departed from the assembly language/Fortran/C model. He cites the programming
languages Lisp, Simula, Smalltalk, and Prolog as different ways to think about computation and
that were rebuked. The claim that these languages and the models they stand for were rejected
or that this rejection was grounded in fear of failure is one interpretation of history, but not the
only one. Gabriel’s own experience may color his perception. He founded a software company
that produced programs for Lisp development and which went bankrupt after 10 years. (That
company did experience some successes, though, and some of its products remain, including the
software I am using to write this paper.) He also has spoken about why C and related languages
are more widely used than those in the Lisp family (Gabriel, 1989). In another interpretation of
history, however, Lisp and its derivative languages were very influential in the development of
computer science concepts and maintain a loyal following and wide respect. More can be said
about Simula and Smalltalk. They represent the earliest attempts at the “object-oriented” approach
to programming, and while that approach took some time to catch on and those two languages
in particular did not become dominant, one must say that object-oriented programming has won
in the long run. Object-oriented languages which are the conceptual descendants of Simula and
Smalltalk are almost universally taught in introductory programming courses. Moreover, if Gabriel
means to suggest that these programming languages or models could have made programming
more accessible to the masses lacking technical skill, it is quite a dubious claim, either that they
could have done so if given the opportunity or even that they lacked the opportunity. For example,
the Logo programming language, a Lisp derivative, was used to introduce computing to elementary
school children in the 1970’s.

As final note on Gabriel’s use of the idea of duende, it might be that duende in fact conflicts
with Gabriel’s understanding of the mob. Garcı́a Lorca’s development of the duende concept was
part of his exploration of the nature of the cante jondo music genre, and came about when in his
mind, “cante jondo no longer seemed a ‘collective’ creation, and the singer no longer seemed a
passive ‘medium’ for the ‘voice of the people.’ . . . [The elements of cante jono] depended upon
the ‘personality’ of an individual performer, and upon his or her search for the spirit known as
duende” (Maurer, 1998, pg viii). Mob software is produced by an aggregate effort of programmers
who are “not individually important” (Gabriel, 2000, pg 2).

17

4 Theme: The good old days are gone, but they’re coming back

Gabriel’s opening line is “I’ve got good news: That way of hacking you like is going to come back
in style” (Gabriel, 2000, pg 1). His regret at the demise of an earlier age of software development—
an age presumably friendlier to the mob, more consistent with a gift economy, and less afraid of
the duende—pervades the essay, but so does his optimism that a similar movement is underway.
The history of computing is naturally the primary reference point for this claim, but parallels are
found in other human endeavors.

4.1 Context

Gabriel quotes from Steven Levy’s Hackers, a popular and selective history of “the computer
revolution” (Levy, 1994). As a chronicle, it revolves around two loci of early computing activity:
the Massachusetts Institute of Technology in the 1950’s and 60’s, and the San Francisco Bay area in
the 60’s and 70’s. What makes the story interesting is the characters found in the these communities
of “hackers” who were relentless in their seeking access to computers and who, having access,
neglected other areas of life to engage in the joy of hacking.

Hacking. A few things should be said about the terms hacker and hacking. In the popular media
and other non-technical usage, the verb “to hack” means to gain illicit access to computers, such
as to read sensitive information, to take control of a system, or to use one computer as staging
ground to hack into another computer, so as to make one’s steps harder to trace. As examples
of this usage, in April 2009 the news media carried stories about the infiltration of the American
electricity grid and military computer systems by Chinese spies. In coverage of these stories,
many mainstream outlets, including the Wall Street Journal, the New York Daily News, the Boston
Globe, the BBC, and The Guardian, contained headlines labeling the spies as “hackers” or their
activity as “hacking.”

Levy bemoans this in the Afterword of his book:

The term “hacker” has always been bedeviled by discussion. When I was writing
[the first edition of] this book, the term was still fairly obscure. . . . Unfortunately for
many true hackers, however, the popularization of the term was a disaster. . . . [T]he
word quickly became synonymous with “digital trespasser.” (Levy, 1994, pg 432)

This is not at all what is meant by the term by many in the computing community. Instead,
hacking refers to a style of free-spirited programming done by computer wizards, contrasted with
disciplined programming methodologies taught in university classes and generally practiced in
industry. The definition of “hacker” in The Hacker’s Dictionary includes

1. A person who enjoys exploring the details of programmable systems and how to
stretch their capabilities . . .
2. One who programs enthusiastically (even obsessively) or who enjoys program-
ming rather than just theorizing about programming. . . .
3. A person who is good at programming quickly. . . . (Hacker, 1996)

18

In the programming courses I teach, the term even in this sense can have positive and neg-
ative connotations. I may rebuke a student that his code is a “hack,” meaning it uses an ad hoc
solution, something that will not generalize to solve wider problems and will not be easily under-
stood and recognized by other programmers. On the other hand, a clever programming technique
that accomplishes something in a creative way under constrained resources might be praised as a
“hack.”

The Hacker Ethic. The communities Levy describes share a set of values that he calls the Hacker
Ethic, summarized as

• Access to computers—and anything which might teach you something about the way the
world works—should be unlimited and total.

• All information should be free.

• Mistrust authority—promote decentralization.

• Hackers should be judged by their hacking, not bogus criteria such as degrees, age, race, or
position.

• You can create art and beauty on a computer.

• Computers can change your life for the better (Levy, 1994, pg 40–45).

In Levy’s story, The Hacker Ethic was used to justify a good deal of privilege and license.
The original hackers—mostly MIT undergraduates and dropouts who were employed by the Ar-
tificial Intelligence Lab—felt free to look at any lab user’s programs, borrow anyone’s tools, and
enter rooms to which they did not have permission. On the other hand, it represented a certain
sense of responsibility. Anyone who produced a clever hack owed it to the world to leave the tape
containing the code in the lab desk drawer so others could study it.

This put the hackers at odds with the software industry as it developed a life independent
of the computer hardware industry. In 1975, a young Bill Gates complained in an open letter about
“hobbyists” who had obtained unpaid-for copies of his implementation of BASIC (a programming
language) for the Altair (an early home computer) (Levy, 1994, pg 229). This thinking ran counter
to the computer revolution in the minds of hackers, who reasoned that software was information
and information should be free. The problem was not so much with the selling of software but
with restrictions that were put on the purchaser, who, in their view, should be able to study, modify,
share, and even resell it.

A modern expression of similar attitudes towards software is made by what is alternately
called the “open-source” or “free” software movement. Gabriel does not cite any description of
this movement, but it is well-known to his audience. As an example, the Free Software Foundation
defines four freedoms it believes should apply toward software.

• The freedom to run the program, for any purpose (freedom 0).

19

• The freedom to study how the program works, and adapt it to your needs (freedom 1). Access
to the source code is a precondition for this.

• The freedom to redistribute copies so you can help your neighbor (freedom 2).

• The freedom to improve the program, and release your improvements to the public, so that
the whole community benefits (freedom 3). Access to the source code is a precondition for
this. (Free Software Foundation, 2007)

“Source code” refers to the original text of a program written by human programmers. In
order for the program to be executed by the computer, it must either be compiled (that is, trans-
lated) into the machine language of hardware instructions or be interpreted by another program.
Commercial software is usually distributed only in its compiled form. Since the machine language
is not easily human-readable and few programmers are thoroughly trained in it, this effectively
makes it impossible for the consumer to study or modify the software.

The terms “open-source software” and “free software” are often used interchangeably, al-
though the Free Software Foundation adamantly distinguishes between merely “open-source soft-
ware” (meaning the source code is made available) and “free software” defined by the freedoms
listed above. Many people misunderstand the term “free software,” however. While much of it
is available for download at no cost, there are also companies that sell it and charge for customer
support. The software is “free” in the sense that the user may do anything with it (including modi-
fying and redistributing it), not in the sense that it is necessarily given without price. We will avoid
the terminology debate by referring to such software as open-source/free software (OS/FS). The
most visible OS/FS product is the Linux operating system kernel, but there also exists OS/FS for
almost every software category.

The old way of building. The ideas of Christopher Alexander are relevant here as well. We shall
see that Gabriel argues that the work of the mob is nothing new. Alexander believes this about his
philosophy of architecture. The very title of his book indicates that he believes his way of building
is “timeless.” He says

This one way of building has always existed. It is behind the building of traditional
villages in Africa, India, and Japan. It was behind the building of the great reli-
gious buildings: the mosques of Islam, the monasteries of the middle ages, and the
temples of Japan. It was behind the building of the simple benches, and the cloisters
and arcades of English country towns; of the mountain huts of Norway and Austria;
the roof tiles on the walls of castles and palaces, the bridges of the Italian middle
ages; the cathedral of Pisa. (Alexander, 1979, pg 10–11)

Like Gabriel (as we shall see), Alexander sees the breakdown of the timeless way of build-
ing as a recent trend induced by industrialization and the removal of the users of a building from
the process of building:

[I]n the early phases of industrial society which we have experienced recently, the
pattern languages die. Instead of being widely shared, the pattern languages which

20

determine how a town gets made becomes specialized and private. Roads are built
by highway engineers; buildings by architects; parks by planners . . .

The people of the town themselves know hardly any of the languages which these
specialists use. . . The languages start out by being specialized, and hidden from the
people; and then within the specialties, the languages become more private still,
and hidden from one another, and fragments. (Alexander, 1979, pg 231–232)

4.2 Content

Gabriel claims that the mob software approach or something like it was captured by several
early communities in the computing world. Two paragraph-length quotes from Hackers describe
how members of the Homebrew Computer Club were continually sharing and improving on each
other’s discoveries of what they could do with their home machines, a “textbook example of” syn-
ergy (Gabriel, 2000, pg 4); and how at MIT the ITS operating system was produced incrementally,
implemented by the very people who were and would be using it.

Drawing apparently from his own experience, Gabriel describes a golden age of sharing
source code in the research world in the 1960s and ’70s, particularly in the orbit of the program-
ming language Lisp and the field of artificial intelligence. This appears to be a foundation for
the body of software literature he elsewhere states is badly needed. The rise of the software in-
dustry, however, killed the nascent mob software approach. “In the 1980s, it became apparent
there was money to be made by writing and selling software, and that a premium might be had
for being clever about it.. . . At that point [with few exceptions], software source code essentially
disappeared” (Gabriel, 2000, pg 19)

As mentioned above, the mob aspect of computing was smothered by the rise of an indus-
try that was short-sighted in greed for profit, which Gabriel characterizes as “high-octane capi-
talism” (Gabriel, 2000, pg 1) and “fast-lane capitalism” (Gabriel, 2000, pg 17). The Homebrew
hobbyists interacted through a gift economy, just like the OED volunteers. This gift economy of
the mob was replaced with a commodity economy with several negative results, starting with the
loss of the body of literature. “The effect of ownership imperatives [of source code] has caused
there to be no body of software as literature. It is as if all writers had their own private companies
and only people in the Melville company could read Moby Dick and only those in Hemingway’s
could read The Sun Also Rises” (Gabriel, 2000, pg 17)

Along these lines, no conception of programming as an art could develop. “If all remnants
of literature disappeared, you’d expect that eventually all respect for it. . . would disappear. And so
we’ve seen with software” (Gabriel, 2000, pg 17). In this context, the teaching of programming has
failed. “We find little or no code education. . . . [I]f the student becomes a proficient programmer,
it is due to luck and hard work, in that order” (Gabriel, 2000, pg17).

Some of the other aspects opposed to mob software—either suppressing it or resulting from
its absence—seem, in Gabriel’s view, to have existed earlier in the computing community (though
the implication is that the rise of software as commodity has prevented the correction of these
things). “Early computing practices evolved under the assumption that the only uses for comput-
ers were military, scientific, and engineering computation” (Gabriel, 2000, pg 11). Rather than

21

encouraging a mob making incremental improvements to evolving software, the early practices
had in mind a proverbial sole physicist whose approach to programming was “figure it out, code it
up, compile it, run it, throw it away” (Gabriel, 2000, pg 13). In other words, software necessarily
must be master-planned, not approached with the disorder of the mob or duende. “Master planning
feeds off the desire for order, a desire born of our fear of failure, our fear of death” (Gabriel, 2000,
pg 11).

The early assumptions were that computing would be interesting only to engineers and
such people. These assumptions are proven false by the prevalence of computing we find today,
but they prevented programming itself from getting into the hands of the masses. “Today almost
every business and human pursuit is built on computing and digital technology. Artists. . . tightrope
walkers. . . carpenters. . . dentists. . . depend on computing, and most of the people I mentioned want
to have a say in how such software works, looks, and behaves. Many of them would program if
it were possible” (Gabriel, 2000, pg 16). Like Christopher Alexander’s wish that the design and
construction of buildings be put into the hands of those living in and using them, so part of the
vision of mob software is the putting of programming into the hands of the users. Just as homes
are customizable—home owners can put in new shelves and repaint or, if they are more ambitious,
perform a serious remodelling—so OS/FS programs can be tailored to the needs and preferences
of the users by the users themselves. The ITS operating system mentioned above is an example.

Nevertheless, Gabriel sees mob software beginning to take off. The first bit of evidence
is the OS/FS movement, particularly in that it has produced high-quality and successful prod-
ucts. “Open source. . . provides our first view into mob software. . . By now we know about quite a
few mostly successful open-source—or baby mob software—projects: Linux—which has won a
number of awards for customer support and artistry—Mozilla, Jikes, Emacs, GCC, Apache, Perl,
Python, sendmail, and BSD” (Gabriel, 2000, pg 18). The list includes two operating systems, a
web server, an email server, a web browser, a text editor, and four programming language systems.

Gabriel is very quick to point out, however, that the free software movement does not go
far enough. “Unfortunately, the open-source community is extremely conservative, focusing solely
on the need to build up slowly a parallel open infrastructure next to the proprietary ones already in
place” (Gabriel, 2000, pg 25–26). True mob software would be willing to explore a more varied
and creative realm of software and would be less concerned about maintaining stable versions of
the code. “Open-source projects tend to be convergent: Each project is aimed at a particular artifact
in the end. Mob-software projects tend to be divergent: The goal is to build variety and diversity so
that the competitive forces and natural selection in the user realm can take over” (Gabriel, 2000, pg
26). Implied but unstated is that only engineers and the like, unfortunately, are involved in OS/FS
work.

Perhaps a better example of the work of the mob in computing technology, in Gabriel’s
view, is the variety of uses (and users) of the World Wide Web. “The World Wide Web was first
envisioned as a way to publish and cross-reference scientific papers. . . . But the technology was
accessible to real people, and the Web grew almost boundlessly” (Gabriel, 2000, pg 29). The Web
is also a medium through which Gabriel sees a gift economy to be viable alongside the commodity
economy.

As a final (non-computing) example, Gabriel describes Levittowns, planned communities
built by the development company of Levitt and Sons after World War II. These homogeneous,

22

mass-produced homes represented the opposite of Christopher Alexander’s timeless way. “I might
have argued that . . . Levittown metaphorically epitomized what I find frightening and discouraging
about contemporary software design and construction” (Gabriel, 2000, pg 31). Instead, the mob
living in first Levittown personalized their homes so thoroughly that their uniformity is no longer
easy to recognize. Gabriel has a similar hope for the mob to change the landscape of software.

4.3 Critique

Hackers and how we program. I find what Gabriel says about the “physicist’s model” of pro-
gramming credible in my own experience. As an undergraduate, I was told that when approaching
a large programming task we were to “design, design, design first.” A recent graduate whom the
department had hired to develop some software for them had spent five months designing the soft-
ware and one month coding it. “Figure it out, code it up, compile it, run it, throw it away,” as
Gabriel puts it (Gabriel, 2000, pg 13). Eagerly coding away before figuring it out, my professors
would warn, would mean making design mistakes I would pay for later.

In graduate school I found myself not following their advice. When I reflected on what
I was doing, it seemed I was taking a “code first” approach. The process would be code, debug,
understand, document. It bothered me a little. I felt like I simply did not have the discipline to
design first and to test and document as I went along as I was taught to do. I once had a conversation
with another graduate student, an acquaintance of mine, who happened to be a physicist. He
was doing some coding as part of his research or a class he was taking, and mentioned studying
the algorithms he would be implementing. Do you always need to take so much time studying
other people’s algorithms? I asked. “I don’t feel comfortable starting to code until I understand
completely what the algorithm is doing,” he replied. Would you ever attempt to learn an algorithm
by programming it? “Recipe for disaster,” he said.

My thoughts pulled me in two directions. Part of me thought, here is a man who is disci-
plined enough to program the right way while I am just making trouble for myself. On the other
hand, I was not just implementing algorithms I read in a book. As a researcher in computer science
itself, not just a field that used computing, I was inventing my own algorithms. I had tried the “de-
sign first” (not quite the “design, design, design first”) approach, and it did not work—I truly could
not anticipate the problems the design would need to address until I actually attempted to code up a
solution. But even algorithms I read in journals were simply too complicated to understand just by
reading and thinking. My practice was to learn algorithms by coding them. Perhaps it was because
I was a computer scientist and code was my everyday currency of thought. Or perhaps Gabriel was
right (if this is what he meant): when you are doing something new and ambitious and when you
are really inspired, you just want to hack.

Software and architecture. Much of Gabriel’s argumentation in this theme depends on an anal-
ogy between software and architecture. The use of this analogy is not new. In fact, architecture
provides much the standard vocabulary for talking about software development. It is no surprise
that a community like OOPSLA so readily appropriates the work of an architect like Christopher
Alexander. However, the validity of the present argument depends on the analogy holding at spe-
cific points.

23

Of course the analogy breaks down somewhere, and one place is the potential (and, usually,
actual) complexity of software that come from its flexibility and detachment from physical reality.
As Fred Brooks puts it, “[Software is] such a tractable medium. The programmer, like the poet,
works only slightly removed from pure thought-stuff. He builds his castles in the air. . . ” (Brooks,
1995, pg 7). “The floor plan of a building helps both architect and client evaluate spaces, traffic
flows, views. . . . The reality of software is not inherently embedded in space. Hence it has no ready
geometric representation . . . ” (Brooks, 1995, pg 185)

This makes a difference in evaluating the idea that mob software would make programming
more accessible to the masses, that someone could modify his or her spreadsheet program just like a
Levittown resident spends his Saturday afternoon on a home improvement project. No one would
mistake the modifications I have made to my home for something done by a professional. For
example, there is the towel rod in our bathroom whose wall plate I bent so badly that the brackets
are not flush against the wall. It still holds towels. By contrast, any programmer knows that a small
tweak to a piece of software could crash the entire system, and you will be at a loss to know even
whether the mistake is in the modified part itself or in the way that the part interacts with the rest
of the system.

Even if the analogy does hold, Gabriel’s vision of the work of the mob may not match how
the “mob” worked in architecture. For example, one way in which Gabriel says the free software
movement does not go far enough is that it mirrors proprietary software’s command-and-control
system by having “small core teams led by module owners who are strict gatekeepers” (Gabriel,
2000, pg 26). Gabriel himself quotes Christopher Alexander on cathedral building that although
the individual workmen made their own mark on the building, “At any given moment there was
usually one master builder, who directed the overall layout” (Alexander, 1979, pg 216). In some
cases, the identity of the master planner is preserved. The Rheims Cathedral guidebook says, “It
was Jean d’Orbais who undoubtedly conceived the general plan of the building. . . . This is one of
the reasons for the extreme coherence and unity of the edifice” (Eschapasse, 1967). The cathedrals
may not even be monuments to a mob working apart from detailed plans. Christopher Alexander’s
denial that “some great architect created these buildings, with a few marks of the pencil, worked
out laboriously at the drawing board” is called into question by the existence of architectural plans
for Gothic cathedrals very similar to the plans architects draft today (Böker, 2005). The precedence
for mob activity within the analogy is incomplete.

Hacker lifestyle. The most questionable comparison, however, is not between software and ar-
chitecture. It is the suggestion that the early hackers provide any sort of a model for “the ways that
people work effectively” (Gabriel, 2000, pg 1) or an alternative to the “error prone, hectic, family-
destroying, health-degrading, night-haunting” (Gabriel, 2000, pg 14) mode of work that the com-
modification of software has forced on programmers. Even a superficial read of Hackers reveals a
near-universal theme of characters who sacrifice the rest of their lives for their hacking. When one
hacker’s “computer widow” left him, “it was a jolt that many Homebrew members—those who
had convinced a woman to marry a computer addict in the first place—would experience. ‘I would
say the divorce rate among computer scientists is almost 100 percent—certainly in my case,’ Gor-
don French later said” (Levy, 1994, pg 235–236). In fact, the “way of hacking you like” (Gabriel,
2000, pg 1) with which Gabriel tantalizes his audience embodies the very stereotype that keeps

24

the masses away from computing. This is my consistent experience in efforts to recruit students
without prior programming experience to computer science courses.

In summary, this calls into question Gabriel’s enthusiasm for mob software. There is insuf-
ficient evidence that the masses want to participate in the way he supposes, or that they would be
happy with the software they would produce if they did. Moreover, the model he proposes—the
masses customizing their software in the way they customize their houses—fails at certain points,
and the examples of past mob software he cites are unlikely to appeal to the masses.

5 Response

How Christ’s lordship influences the production of software is hard to see or articulate—if there is
any way. This is why I find Gabriel’s ideas worthy of attention. How should a Christian respond to
this? More generally, how should a Christian regard himself or herself in the field, and how readily
should we participate in the goals and projects of the community?

5.1 What Christians can affirm

One reason I have not been able to ignore this essay is because there is so much I find attractive
in it. I would also like to see coding appreciated for its art and beauty, and to see a wider range of
people learn to program. (One motivator, I suppose, is job security—for an academic program like
the one I am in to survive, we need a wider variety of students to take a second major in computer
science, or a minor, or even a computer science course or two.)

The craft of coding. The mental activity that I here want to make obedient to Christ is not the
general computer use in which nearly everyone in modern society participates. Nor is it as wide
as the field of computer science, in which I teach. Our present focus is specifically on software
production. In fact, more specifically than that, we are concerned with the task of programming
or coding, which is only one step in the software development process (other activities include
specification, design, documentation, testing, and maintenance). This is the activity that Gabriel
is trying to exalt. In the current, gloomy situation, Gabriel says, “the focus is on architecture,
specifications, design documents, and graphical design languages. Code as code is looked down
on. . . . We find little or no code education” (Gabriel, 2000, pg 17)

Those who have never programmed will have trouble conceiving the joy many of us find in
crafting computer code. (Students who have suffered through a required introductory programming
course which was not designed for them and for which they were unprepared are likely even more
skeptical.) It is, however, a universal experience of those who have gotten deeply into program-
ming. Fred Brooks, a Christian in the field of computer science, attributes the fun of programming
to “the sheer joy of making things. . . the pleasure of making things that are useful to other peo-
ple . . . the fascination of fashioning complex puzzle-like objects of interlocking moving parts and
watching them work . . . the delight of working in such a tractable medium” (Brooks, 1995, pg 7).
Joseph Weizenbaum considers extreme cases of this to be a new mental disorder, “the compulsion

25

to program,” which he compared with compulsive gambling (Weizenbaum, 1976, pg 115–122).

What is programming? Is it a leisure activity, like gardening, where one can find some quiet
solitude, put in hard work but at an unregulated pace, and reap results after patient labor? Is it a
cultural activity, like music or cooking, where one can tune and showcase his or her talents for his
or her own enjoyment or others’? Or is it a technological activity, like engineering, in which tools
are used or fashioned to make life’s mundane tasks easier? Programming is all of these things, and
one who has experienced its thrill can only hope to see more people find it enjoyable and useful.
Levy’s hackers—Gabriel joins Levy in lionizing them—understood coding this way, their “Hacker
ethic” including such propositions as “You can create art and beauty on a computer” (Levy, 1994,
pg 43) and “Computers can change your life for the better” (Levy, 1994, pg 45).

Like other cultural activities, programming is worth examining in asking what it means to
be human. Put positively, the unlimited creativity of computer programming is an expression of
our following God’s example. Quoting Brooks again, “I think [a programmer’s] delight must be
an image of God’s delight in making things, a delight shown in the distinctness and newness of
each leaf and each snowflake” (Brooks, 1995, pg 7). Don Knuth said, “I think people who write
programs do have at least a glimmer of extra insight into the nature of God. . . because creating a
program often means that you have to create a small universe” (Knuth, 2001, pg 168).

Put negatively, the power a programmer has over the computer appeals to the rawest form
of our sinful nature, the temptation to be like God. Weizenbaum explains,

The computer programmer, however, is a creator of universes for which he alone
is the lawgiver. . . . [U]niverses of virtually unlimited complexity can be created in
the form of computer programs. . . . No playwright, no stage director, no emperor,
however powerful, has ever exercised such absolute authority to arrange a stage or
a field of battle and to command such unswervingly dutiful actors or troops.

One would have to be astonished if Lord Acton’s observation that power corrupts
were not to apply in an environment in which omnipotence is so easily achievable.
It does apply. (Weizenbaum, 1976, pg 115)

Levy similarly describes the attitudes of the hackers (though without noting any danger):
The computer “had made them masters of a certain slice of fate. . . . Like Aladdin’s lamp, you could
get it to do your bidding” (Levy, 1994, pg 45–46). The ancient appeal of sorcery is that one could
exercise control over supernatural powers. The analogy between programming and sorcery is not
lost on the computer science community. One of the most respected introductory programming
texts “is dedicated, in respect and admiration, to the spirit that lives in the computer” (Abelson
and Sussman, 1996, pg v) and says in its opening paragraph, “We are about to study the idea
of a computational process. Computational processes are abstract beings that inhabit computers.
. . . People create programs to direct processes. In effect, we conjure the spirits of the computer
with our spells” (Abelson and Sussman, 1996, pg 1). (One of the authors of that text is one of
Levy’s hackers.)

The Christian Programmer. How can we characterize a programmer with commitment to Christ?
The easiest way is to take those things which are true for a Christian in any labor or activity, and

26

see how they apply to coding and participation in the software community.

The First Commandment, according to the Westminster Shorter Catechism, teaches us “to
know and acknowledge God to be the only true God, and our God; and to worship and glorify him
accordingly” (Westmisnter Shorter Catechism, 1647). To acknowledge and glorify God certainly
includes avoiding all danger and temptation to making a god of oneself. Likewise, for any ability
we may have or accomplishments we may produce we must thank God and acknowledge that
they belong to him. Gabriel says, “software skill is a gift from an unknown and unknowable
source” (Gabriel, 2000, pg 30). Though in context his concern at least partially is to distinguish
between taught and innate skill, we must resolutely say that software skill, like all others, is a gift
from God, and God is knowable.

Similarly, the Christian programmer must avoid hubris. Though it may sound strange to
think of geeks this way, a sort of machismo pervades the hacker culture and the OS/FS movement,
a commerce of pride and glory. Eric Raymond describes how the volunteers who have contributed
to Linux are compensated by “the intangible of their own ego satisfaction and reputation among
other hackers” (Raymond, 2000, pg 22). Discourse surrounding many OS/FS projects in online
forums is frequently acrid and prideful, unaccepting to newcomers or those perceived to have
less ability. Gabriel acknowledges that for Mob Software to flourish, there needs to be “a culture
similar to the current open-source culture, but . . . much more accepting of users, especially novice
users” (Gabriel, 2000, pg 28). A Christian’s witness for the gospel is a more critical reason for
exemplary public behavior.

In addition to pride, the Christian programmer will find himself or herself in a culture that
encourages and glamorizes addictive and compulsive behavior. We have already spoken of Levy’s
hackers and Weizenbaum’s compulsive programmers, who “cannot attend to other tasks . . . when
[they are] not actually operating the computer. [They] can barely tolerate being away from the
machine. . . . The compulsive programmer spends all the time he can working on one of his big
projects” (Weizenbaum, 1976, pg 118). Margolis and Fisher, likewise, describe the “person in love
with computers, myopically focused on them to the neglect of all else, living and breathing the
world of computing,” (Margolis and Fisher, 2002, pg 65). The image of such people, they say, turns
many people, especially women, away from the field of computing. Whether for work or leisure,
the Christian programmer must exercise the same cautious moderation in his or her programming
as he or she does towards all other things. The Westminster Larger Catechism considers it to be part
of our obedience to the Sixth Commandment (“you shall not murder”) to engage in “a sober use
of meat, drink, physic, sleep, labor, and recreations” (Westminster Larger Catechism, 1647, QA
135) and to avoid “immoderate use of meat, drink, labor, and recreations” (Westminster Larger
Catechism, 1647, QA 136).

Nevertheless, as with other aspects of work and culture, this is not reason for the Christian
to withdraw. The period between Christ’s ascension and return, when Christians are “in the world”
(John 17:11) yet not “of the world” but “chosen out of the world” (John 15:19), is comparable to
that of the Israelites in exile: God’s holy people, living among the heathen, awaiting deliverance.
Jeremiah wrote to the exiles telling them to settle and participate in the culture in which they found
themselves. “Build houses and live in them; plant gardens and eat their produce. . . . [S]eek the
welfare of the city where I have sent you into exile, and pray to the LORD on its behalf, for in its
welfare you will find your welfare” (Jeremiah 29:5 & 7, ESV). Nothing here is unique to the one

27

involved with software production, but the principle applies if this is the work which one’s hands
find.

Similarly, there is a general need for Christians to work with an exemplary level of ex-
cellence, both for imitating God and promoting a good name for ourselves and the gospel. The
Christian who is involved in programming, whether commercial or as part of the OS/FS move-
ment, must have courtesy and integrity which will gain notice. Software development is a domain
in which there is much room for shoddy work as well as opportunities for good work to stand out.
A Christian programmer should consider it a duty that any software which will be used by others
would have good design, thorough testing, and adequate documentation.

A final arena where ethical concerns affect the Christian programmer is that the Christian
should look for opportunities to use his or her craft to support the work of the gospel and to
show mercy to those in need. Karl-Dieter Crisman has pointed out that many participants in the
OS/FS movement believe they are contributing to social good in the sense that the software they
produce is available without fee and so is accessible to those with fewer resources, especially the
developing world, and for this reason Christian participation in the OS/FS movement is consonant
with Christian stewardship (Crisman, 2008, pg 11–12). The Christian programmer will want to use
his or her abilities and opportunities so that Christian love for the needy will outshine any secular
concern for social good.

5.2 Critique

Gabriel’s vision of mob software attains many of the deseridata I have described above. Its real-
ization would spread the appreciation of coding to many people. Excellence would be encouraged.
The willingness to help and share would encourage the development of software for social good.
This paper has uncovered various points in which Gabriel’s vision is unrealistic and his claims
unproven, though not all of these observations damage the thrust of his argument or proposal. In-
stead, I submit the following summary of why a Christian should not participate in the movement
as Gabriel presents it.

First, it is founded on a presupposition that God is not the orderer of the universe, specifi-
cally Stewart Kauffman’s ideas of order emerging from chaos as a fundamental law of the universe.
He sees this as something to replace the ancient—especially Christian—understanding of God as
a source of sacredness and meaning. Gabriel uses this assumption to disdain authority and any
deliberate organization. If this proposed view of nature is completely wrong, then one would have
to conclude that mob software simply would not work; that is, it predicts a certain result based on
an incorrect idea of how the world works. Even if aspects of Kauffman’s model were established
and redeemed—meaning that order arising from chaos is a consistent pattern in God’s providential
ordering of the world—the Christian would need to observe God’s glory and acknowledge him in
the process.

Second, the vision puts excessive hope in a human endeavor, essentially a false gospel. The
story of the Tower of Babel teaches us the futility and rebellion of humanity working in concert:
Under the threat of being scattered across the face of the earth, humans try to make a name for
themselves in pride and confidence of their collective ability. God foils their attempt to dethrone
him (Gen 11:1–9, ESV). In mob software Gabriel expects “the spirit of xenia [to] raise to the

28

highest status everyone with a stake in the community. Users participate in design at all levels
of scale, and projects are begun specifically to address the needs or wants of a particular user
community. . . . Resource scarceness created by artificial boundaries no longer exists, and in an era
of abundance, excess thrives” (Gabriel, 2000, pg 28–29). Christians cannot share his optimism.
We know fallen nature itself will interfere with any predicted altruism.

Finally, Gabriel’s proposal is imbibed with a non-Christian spirituality. At the end of
Gabriel’s presentation at OOPSLA, he bowed and placed a small box on the stage, which to me
appeared to be an offering to the duende. To achieve great things, the programmer is expected
to invoke a dark spirit from folklore which rewards haphazard recklessness. This must conflict
with the Christian programmer working dutifully and responsibly, prayerfully acknowledging a
personal God who has apportioned talents as he has willed, the author of order and peace.

5.3 Application

Much of this has been autobiographical. Hearing Gabriel’s talk made me realize the need to con-
sider how the way we think of the world affects the way we program and teach programming, and
whether it limits the way we can participate in software projects. The need to evaluate Gabriel’s
claims led me through a forest of different fields which all teach us something about software
production in one way or another. This paper is something of a report on that journey.

In the spring of 2009, I taught the senior capstone course in our department for this first
time, titled “Social and Ethical Issues in Computing.” One paper we read as a class was entitled
“How Computer Systems Embody Values” (Nissenbaum, 2001). Though an interesting title, more
than one student expressed deep skepticism that computer and software systems could reflect the
values of the people and organizations that developed them (the contents of the article, in fact, did
not explain it or adequately convince the students). I believe, however, that we do see values and
beliefs reflected in the way we program and what we program, but that the reflection comes only
in subtle ways, aspects like the purpose and motivation for the software and the human interaction
around the development of the software, much more so than the design or coding itself.

There are parts of the OS/FS movement to which Christian programmers can make good
contributions and which they can channel for their own priorities. A cultural appreciation for
coding and other aspects of software can develop, and the benefits modern society has obtained
through computing technology can be shared with others. However, my experience with Gabriel’s
mob software proposal—first hearing it originally presented and then tracing out its details—has
taught me that the Christian programmer must be aware of the sources of the ideas around him or
her and weigh carefully where they will lead.

Acknowledgements. I thank David Cook and Bob Brabenec, who served as my official readers
for this paper as my faith-learning project at Wheaton College. I came to David with the vague
idea of how I should respond to Gabriel’s essay, and he helped me shape my ideas into something
coherent. I also thank Cary Gray and Terry Perciante for kindly reading my outlines and drafts, and
providing feedback. Cary in particular offered corrections on the technical and historical material
and pointed me towards useful references.

29

References
Abbate, J. (1999). Inventing the Internet. Cambridge, MA: MIT Press.

Abelson, H. and G. J. Sussman (1996). Structure and Interpretation of Computer Programs (sec-
ond ed.). Cambridge, MA: McGraw Hill and the MIT Press.

Alexander, C. (1979). The Timeless Way of Building. New York: Oxford University Press.

Alexander, C., S. Ishikawa, and M. Silverstein (1977). A Pattern Language. New York: Oxford
University Press.

Böker, J. J. (2005). Architektur der Gotik : Bestandskatalog der weltgrössten Sammlung an gotis-
chen Baurissen. Salzburg: Pustet.

Bratt, J. D. (Ed.) (1998). Abraham Kuyper: A Centennial Reader. Grand Rapids, MI: Eerdmans.

Brooks, Jr., F. P. (1995). The Mythical Man-Month (Anniversary ed.). Addison-Wesley.

(2005). The Confession of Faith and Catechisms. Willow Grove, PA: The Committee on Christian
Education of The Orthodox PresbyterianChurch.

Crisman, K.-D. (2008). Open source software and mathematics: Pedagogy and principle in the
Christian classroom. Third-Year Faculty Integration Paper at Gordon College.

Epstein, J. M. and R. Axtell (1996). Growing Artificial Societies. Cambridge, MA: MIT Press.

Eschapasse, M. (1967). Reims Cathedral. Caisse Nationale des Monuments Historiques, Paris.
Quoted in Brooks Brooks (1995).

Free Software Foundation (2007). The free software definition.
http://www.fsf.org/licensing/essays/free-sw.html (7/16/2008).

Gabriel, R. P. (1989). Lisp: Good news, bad news, how to win big. Keynote address at EuroPAL
conference. http://www.dreamsongs.com/WorseIsBetter.html (7/25/2008).

Gabriel, R. P. (2003). Master of fine arts in software.
http://www.dreamsongs.com/MFASoftware.html (7/18/2008).

Gabriel, R. P. and R. Goldman (2000). “Mob Software: The Erotic Life of Code”. Dreamsongs
Press. http://www.dreamsongs.com/Files/MobSoftware.pdf (7/16/2008). Originally distributed
in booklet form at the OOPSLA 2000 conference. Pagination differs slightly between the orig-
inal published form and the electronic version. Our citations use page numbers from the elec-
tronic version.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley.

Garcı́a Lorca, F. (1998). In Search of Duende. New York: New Directions. Compiled by Christo-
pher Maurer. Originally published 1955.

30

Grabow, S. (1983). Christopher Alexander: The Search for a New Paradigm in Architecture.
Stocksfield, Northumberland, UK: Oriel Press.

Hacker (1996). The Hacker’s Dictionary. http://www.ccil.org/jargon/jargon toc.html (8/27/2009).

Hyde, L. (1983). The Gift: Imagination and the Erotic Life of Property. New York: Vintage Books.
Originally published 1979.

Hyde, L. (2008, Winter). Gifts that keep on giving. WSJ., 84–90.

Kauffman, S. (1995). At Home in the Universe. Oxford UP.

Kierkegaard, S. (1967). Søren Kierkegaard’s Journals and Papers (5 ed.), Volume 3. Blooming-
ton, IN: Indiana University Press. Edited and compiled by Howard Vincent Hong and Gregor
Malantschuk. Translated by Howard Vincent Hong.

Kierkegaard, S. (1999a). Against the Crowd, Chapter 6, pp. 23–24. In Kierkegaard Kierkegaard
(1999b). Also in (Kierkegaard, 1967, pg 305-311).

Kierkegaard, S. (1999b). Provocations: Spiritual Writings of Kierkegaard. Farmington, PA:
Plough Publishing House. Edited and compiled by Charles E. Moore.

Knuth, D. E. (2001). Things a Computer Scientist Rarely Talks about. Stanford, California: Center
for the Study of Language and Information.

Kuyper, A. (1998). “Sphere Sovereignty”, pp. 461–490. In Bratt Bratt (1998).

Levy, S. (1994). Hackers: Heroes of the Computer Revolution (2nd ed.). Harmsondsworth, Mid-
dlesex, England: Penguin Books. Originally published 1984.

Madden, W. A. and K. Y. Rone (1984). Design, development, integration: Space Shuttle primary
flight software system. Commun. ACM 27(9), 914–925.

Margolis, J. and A. Fisher (2002). Unlocking the Clubhouse: Women in Computing. Cambridge,
MA: MIT Press.

Maurer, C. (1998). “Preface”, pp. vii–xi. In Maurer Garcı́a Lorca (1998).

Morris, I. (1986). Gift and commodity in archaic Greece. Man (N. S.) 21, 1–17.

Nissenbaum, H. (2001, March). How computer systems embody values. IEEE Ccomputer 34(3),
120, 118–119.

Oxford English Dictionary (2009). The Oxford English Dictionary. http://www.oed.com
(6/17/2009).

Oxford University Press (2009). http://www.oed.com/about/history.html (6/18/2009).

Raymond, E. (2000). The cathedral and the bazaar. http://catb.org/esr/writings/cathedral-
bazaar/cathedral-bazaar/cathedral-bazaar.ps (6/23/2009).

31

Reynolds, C. (2001). Boids. http://www.red3d.com/cwr/boids/ (8/28/2009).

Reynolds, C. W. (1999). Steering behaviors for autonomous characters. In The Proceedings
of Game Developers’ Conference, San Jose, CA, SanFrancisco, pp. 763–782. Miller Freeman
Game Group.

Schaff, P. (Ed.) (1977). The Evangelical Protestant Creeds, With Translations, Volume III of The
Creeds of Christendom. Grand Rapids: Baker. Originally published by Harper and Row, 1877.
Available at http://www.ccel.org/ccel/schaff/creeds3.html (6/23/2009).

Thomas, L. (1974). The Lives of a Cell. New York: Viking.

VanDrunen, T. (2009). Flocking pattern simulation. http://cs.wheaton.edu/˜tvandrun/skeets/skeets.html
(6/16/2009).

Weizenbaum, J. (1976). Computer Power and Human Reason. San Francisco: W. H. Freeman and
Company.

Westminster Larger Catechism (1647). The Westminster Larger Catechism. Confession of Fatih
(2005).

Westmisnter Shorter Catechism (1647). The Westminster Shorter Catechism. (Schaff, 1977, pg
676–700).

Wikipedia (2009). http://en.wikipedia.org/wiki/Lewis Hyde (7/18/2008).

32

