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As a teacher of mathematics, the number one question that I receive from students is 

undoubtedly “When am I ever going to use this?” This paper is ultimately a response to that 

question, though the response may go most unappreciated by those students who most need it. 

My basic response to this question is this: it is the wrong question, or at least it isn’t the question 

the student truly intended to ask. It is my belief that modern society has conditioned students 

(and people in general) to value things (including knowledge) for their practicality. The question 

my students are really asking is “Why should I value this?” and they expect a response in terms 

of how math will get them ahead in life, earn them more money, and in general fix all their 

problems. But why should practicality be considered such a virtue? Should mathematical study 

be pursued because it is useful? Or should it be pursued simply for its own sake? It is my 

contention that the latter option, valuing mathematical inquiry for its own sake in the general 

pursuit of truth, is a better mindset (or worldview) in which to approach the practice of 

mathematics. This paper will demonstrate one reason to support such a view: it actually leads to 

more practical applications of mathematical endeavors than would otherwise be discovered. In 

other words, someone who approaches mathematical inquiry for its own sake is in a better 

position to find practical applications of the material than the person who comes to the table with 

applicability as their sole (or main) driving motivation.
1
 Historical support for this theory may be 

found in the life and philosophy of George Berkeley, an 18
th

 century Irish philosopher and 

Bishop of Cloyne. 

This paper will demonstrate how Berkeley’s philosophical approach to mathematics led 

to an increase in practical mathematical advances. Namely this paper will examine how 

Berkeley’s critique of the calculus as developed by Newton and Leibniz brought about the 

refinement of real analysis, through the likes of Cauchy and Weierstrass, and also the 

development of nonstandard analysis by Abraham Robinson – events that may not have 

transpired (at least perhaps not yet) had the wonderful practicality of the calculus simply been 

accepted. This paper will first examine Berkeley’s objections to the pervading mathematical 

philosophy of his day, particularly the outworking of these objections in his criticisms of 

calculus as mentioned above. Secondly it will fit Berkeley’s philosophical convictions on 

mathematics into his broader philosophical pursuits, demonstrating that Berkeley’s motivation 

behind his critiques went beyond examining the practicality of the calculus. His views of 

mathematics were firmly rooted in his philosophical and theological convictions. Finally, this 

paper will examine the historical implications of Berkeley’s work, with a particular focus on the 

development of nonstandard analysis. In conclusion it will be clear how Berkeley’s philosophical 

approach to mathematics set the stage for further practical advancements around the calculus and 

thus portray him as a prime historical example of elevating the pursuit of mathematical truth over 

the pursuit of mathematical utility.   

The reader should note up front that Berkeley’s philosophical pursuits were explicitly 

marked by Christian belief (as will become clear in the section of this paper titled “Berkeley, 
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Mathematics, and the Christian Faith”). The main argument of this paper is that a worldview 

which integrates philosophy and mathematics is needed to best pursue mathematical 

applications, so the immediate follow up question is “how does one go about integrating 

philosophy and mathematics correctly?” From my own perspective I believe we can still learn 

much from Berkeley here, rooting our philosophy and mathematics in Christian belief.  

Berkeley’s Objections to Abstractionism in Mathematics and his Criticisms of the Calculus 

Berkeley was concerned with mathematics and its philosophical interpretation from the 

earliest stages of his intellectual life (Jesseph, 2005). To be sure, Berkeley held no qualms about 

the practicality of mathematics. In fact the situation was quite the opposite. Mathematics was on 

Berkeley’s theory an essentially practical science. He saw no benefit in contemplating numbers 

in and of themselves apart from their subservience to practice, to measuring and counting actual 

things, and to the promotion of the benefit of human life (Johnston, 1923). Berkeley did not hold 

a position that claims the practicality of mathematics is unimportant. Rather, he believed it was 

so important that practical theories must be scrutinized under a careful philosophical lens before 

they are universally approved. Berkeley held so strongly to this conviction (being heavily 

influenced by other areas of his philosophy as we will discuss in the next section) that he was 

prepared to challenge the received views of his predecessors in the philosophy of mathematics. 

Just as he approached the metaphysical, epistemological, or scientific doctrines of Descartes, 

Leibniz, or Newton with a critical attitude, Berkeley was prepared to challenge their accounts of 

mathematics, even if this meant rejecting the most widely received principles and successful 

mathematical theories of his day (Jesseph, 2005). If anything can be said about George Berkeley 

it is that his convictions (which as we will see were deeply rooted in Christian faith) continually 

led him against the grain of the accepted views in his contemporary academic culture.  

The object of Berkeley’s attack was a philosophy of mathematics that characterized the 

discipline as a science of abstractions. Abstractionism regards mathematical objects as the result 

of a mental process that begins with perception but creates a special kind of non-perceptual 

object (Jesseph, 1993). The claim here is that the mind can “pare away” irrelevant features of 

perceived objects and thereby produce an object appropriate for the science of pure mathematics. 

As an example, Euclid’s definition of a line as “length without breadth” would be understood as 

an abstraction in which the mind mentally separates length from breadth, thereby forming an 

abstract object appropriate for the science of geometry. 

Berkeley’s attacks on the abstractionist philosophy of mathematics surface in great detail 

in his writings on geometry and arithmetic (and then by extension on algebra). However, for the 

purposes of this paper we will look exclusively at his critique of calculus as this is perhaps his 

most well known attack on the accepted mathematical principles of the early seventeenth 

century, as seen in his treatise, The Analyst (though it should be noted that his criticisms of 

calculus derive from his misgivings on geometry). The Analyst demonstrates most clearly the 

mathematical theories Berkeley is rejecting and his reasons for rejecting them. 

From the time of Apollonius (circa 250 BC) there was a great interest in the problem of 

tangents: how to draw a tangent to a given curve. There were two people instrumental in the 

development of this problem (1900 years after Apollonius): Gottfried Leibniz and Isaac Newton, 

who independently attacked the problem using coordinate geometry. Their work became known 

as the (differential) calculus. Though each developed arguments in a unique way, both had a 

common underlying assumption of the existence of infinitesimals; quantities so incredibly small 
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that they are said to be between nothing and something.
2
 Berkeley’s work was done primarily in 

response to Newton, but his criticisms apply equally to both methods. Berkeley’s strongest 

argument comes in opposition to the most fundamental premise of calculus, what Newton termed 

the fluxion, or infinitesimal change; a term that corresponds roughly with what today is referred 

to as the derivative.  

The derivative gives the slope of the tangent at any point of a curve (also referred to as 

the instantaneous rate of change). It is basically determined by starting with the geometric 

definition for the slope of a line between any two points, and considering two points that are 

infinitely close to each other, that is, two points that are separated by an infinitesimal distance. 

The basics of a Newtonian proof of a derivative supposing   to be equal to the curve    

proceeded as follows: 

 

               
(1) 

Taking the positive increment denoted by      and      gives
3
 

     (    )          (2) 

Expanding the right side by the binomial theorem gives 

                
(    )       

 
        (3) 

Subtracting (1) from (3) gives 

           
(    )       

 
         (4) 

Dividing both sides by    results in an equation expressing the ratio between    and    

at any point on the curve: 

  

  
       

(    )      

 
    (5) 

Because    is infinitely small in comparison with  , the terms containing it can be 

disregarded and: 

  

  
                 (6) 

 

Notice in this derivation, infinitesimals are both “something” and “nothing”: something 

because you can divide by them; nothing because you can disregard them in the final solution.   

Newton referred to this slope of the tangent as “the fluxion of the fluent   ” (Stewart, 

1996). The power of this result is that it allows what once would have to be determined by 

complicated and cumbersome geometric analysis to be determined by a simple algorithm and 

formula. The usefulness of this result does nothing however to impede Berkeley’s criticisms of 

Newton’s argumentation. 

Berkeley’s reason for rejecting this procedure is that Newton takes the quantity dx first to 

be nonzero, and then zero, while nevertheless maintaining results that can only be obtained under 

the supposition that the dx is nonzero. Specifically the move from (4) to (5) is impossible without 

dx being nonzero because otherwise there would be division by zero which results in an 
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undefined expression. Yet this supposition is contradicted in the move from (5) to (6), which can 

only be permitted if dx equals zero. Berkeley objected that either dx is not exactly zero – in 

which case the answers are wrong, albeit not by much – or it is zero, in which case you can’t 

divide by it, and the calculation doesn’t make sense. Berkeley was objecting to the calculation of 

a fluxion as a ratio between two quantities which both vanish. As he famously states in The 

Analyst: “What are these fluxions? The velocities of evanescent increments. And what are these 

same evanescent increments? They are neither finite quantities, nor quantities infinitely small, 

nor yet nothing. May we not call them ghosts of departed quantities?” (Berkeley, 2002). 

Berkeley is operating under the undeniable premise:  

If, with a view to demonstrate any proposition, a certain point is supposed, by virtue of 

which other certain points are attained; and such supposed point be itself afterward 

destroyed or rejected by a contrary supposition; in that case, all the other points attained 

thereby, and consequent thereupon, must also be destroyed and rejected, so as from 

thenceforward to be no more supposed or applied in the demonstration. (Cajorie, 1919). 

Newton appears to violate Berkeley’s premise by treating dx as both nonzero and zero. This use 

of such an abstract dx is unintelligible to Berkeley.  

Traditional concepts of rigor require that mathematics deal with objects that are 

comprehended clearly – the use of infinitesimals then requires some further justification if it is to 

be reconciled with the relevant canons of rigor and intelligibility. A major concern in Berkeley’s 

philosophy of mathematics is to show that the infinitesimal dx is both inadmissible and 

unnecessary in a properly developed mathematical theory (Jesseph, 2005). Berkeley’s rejection 

of abstraction entails a repudiation of the dominant philosophy of mathematics of his day, and it 

is no exaggeration to say that his entire philosophy of mathematics is founded upon his critique 

of abstraction (Jesseph, 2005). Berkeley viewed mathematics through a philosophical lens, 

desiring veracity over mere utility.  

One final point to note is the response of Berkeley to the flaws he saw in the logic of 

calculus. Berkeley did not deny the utility of the new devices nor the validity of the results 

obtained (Boyer, 1959). He doesn’t merely criticize the logic of Newton and Leibniz; rather, he 

recognizes that their results are indeed useful and practical (what Berkeley refers to as 

instrumental), so he sets himself to the task of explaining why something logically inconsistent is 

able to produce apparent solutions to problems; why something unintelligible and inconceivable 

works when applied to conceivable and intelligible things. Berkeley’s answer is that, in taking 

infinitesimally small quantities from a given point (x + dx and x – dx), Newton’s calculus both 

simultaneously underestimates and overestimates, and therefore these mistakes cancel each 

other. This argument of the compensation of errors is widely contested, but what is important is 

not the proof itself, but rather the means that Berkeley employs to undertake the proof: using 

accepted methods of mathematical inquiry, deduction, and rigor.  

Berkeley’s Primary Philosophical Endeavors, their Underlying Motivation, and their 

Synthesis with Mathematics 

Berkeley is known for his immaterialism; his view that there is no matter in the universe, 

and the only things that exist are minds (spirits). Matter, in his view, is by definition stuff 

external to any mind. Berkeley did not deny that there are objects such as books and trees, but he 

held that such physical objects exist only in minds, wholly constituted of ideas (Pereboom, 
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2006). This concept of immaterialism may seem a radical perspective to take but its radicalism 

might be tempered somewhat by understanding the deeply theological influence behind this 

notion. To Berkeley, all that exists, exists in the mind of God. Colossians 1:17 seems to support 

this view at least insomuch as a sound Christian understanding is that reality is continuously and 

solely being held together by the divine will of God. Even if one doesn’t hold to the strict 

immaterialism of Berkeley, one can at least appreciate his theological convictions and the 

resiliency with which he applied those convictions to his views of the nature of mathematics. 

Berkeley’s thought arose largely in response to the theory of knowledge put forward by 

John Locke.
4
 In Locke’s account of knowledge, there exist objects in the material world with 

certain properties (or qualities). Primary qualities are those that are actually in the thing such as 

motion, shape, solidity, and extension. Secondary qualities are not in the thing itself but are the 

power it has by virtue of its primary qualities to create in us certain sensations, for example, 

color, texture, smell, taste, and sound. Tertiary qualities are the qualities a thing has to affect the 

primary qualities of other things (for example how fire can alter the properties of a piece of 

wood). All of these qualities impinge on us to create an idea. The idea of the object is itself made 

up of ideas of primary and secondary qualities. What people are immediately aware of on 

Locke’s model is the idea of the object, not the object itself. This clearly shows there is a gap 

between the world external to us and the world of our mind.  

Berkeley’s strongest denial of the existence of matter involves his attack on the supposed 

mind-independence of primary qualities (Pereboom, 2006). Berkeley argues that perception of 

primary qualities varies in the same way as the perception of secondary qualities and that, 

consequently, primary qualities are as mind-dependent as secondary qualities. Berkeley argues 

that primary qualities cannot be conceived apart from secondary qualities. What it means for a 

thing to exist is that it is perceived; that there is an idea of the thing. Berkeley concludes that 

there is nothing more to the thing than our collective ideas. We find this notion applied to his 

philosophy of mathematics in his Philosophical Commentaries: “Axiom. No reasoning about 

things whereof we have no idea. Therefore no reasoning about Infinitesimals” (354).  

Berkeley argues that the idea in the mind is the thing itself. There is no external world, all 

things are mind-dependent and specifically, in Berkeley’s personal philosophy, they are 

dependent on the mind of God (as will be explained in greater detail below). Berkeley was not 

simply trying to bridge the gap presented by Locke, he was trying to do away with it completely. 

Berkeley saw Locke’s views, and the skepticism it breeds, ultimately leading to atheism and he 

tried desperately to curb that path of western philosophy. “Berkeley’s gaze was always fixed on 

his polemical and apologetic goals; and it was only insofar as the prevailing philosophical 

currents could be put at the service of these goals that he appropriated and adapted them in his 

struggle with the enlightened philosophy which attempted to sever all links with the classical and 

Christian roots of European culture and civilization” (Hanratty, 1995). Similarly it can be said 

that Berkeley regarded his criticism of calculus as part of his broader campaign against the 

religious implications of Newtonian mechanics which bread a deism that tended to distance God 

from His worshippers. This point will be analyzed further in the next section. 

Berkeley’s philosophical endeavors on accounts of knowledge were driven by his 

theological beliefs, and so in turn was his philosophy of mathematics. For Berkeley there is a 

direct relationship between the theory of knowledge put forward by Locke and the pervading 

philosophy of his day: mathematical abstractionism. “From the beginning Berkeley argued that 
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the skeptical, materialistic, and atheistic implications of the new philosophical movement were 

closely linked with the inflated status accorded to the recently expanded mathematical and 

scientific methods” (Hanratty, 1995). What the prevailing mathematicians of the time were 

employing, particularly Newton and Leibniz in the development of calculus, were abstractions 

that could not be conceived. It is impossible to have an idea of a quantity that is both zero and 

nonzero, to propose that such a quantity exists is utter nonsense.  

It would be a mistake to see The Analyst as an isolated foray into mathematical terrain or 

as a work disconnected from Berkeley’s broader philosophical enterprise (Jesseph, 2005). “His 

attack on infinite divisibility found in mathematics….exhibits a strategy employed throughout 

Berkeley’s philosophical writings, that of showing us that we do not understand something we 

think we understand since the words we use refer to nothing intelligible” (Fogelin, 2001). 

Berkeley repeatedly insists that the capacity of the human mind does not extend to the 

comprehension of the infinite (Jesseph, 2005). 

Berkeley, Mathematics, and the Christian Faith 

“All Berkeley’s endeavors were directed to the defense of what he saw as the most 

important truth – that we are in a constant and immediate relationship of dependence on God. 

Berkeley’s philosophy, including his provocative denial of the independent existence of material 

substances in his early writings, was a provisional instrument in the service of his overriding 

apologetic aim” (Brykman, 1984). George Berkeley’s apologetic aims influenced every aspect of 

his philosophical work, even areas of his philosophy that on the surface would seem disjoint 

from theology; namely the philosophy of mathematics. Berkeley’s theological convictions 

clearly influenced his philosophy of mathematics. This is perhaps made most obvious by 

noticing how Berkeley’s philosophical convictions on mathematics fit into his broader 

philosophical pursuits, and how these pursuits were clearly marked by his Christian beliefs. 

Through this process it becomes clear how Berkeley’s apologetic motivation manifested itself 

not merely in his metaphysics, but in his philosophy of mathematics as well.    

Understanding Berkeley’s Christian apologetics and his philosophy of mathematics and 

how the two tie together is the key to understanding The Analyst. I devote a section of this paper 

to this point because I believe that, as mentioned in the introduction, there is much to learn from 

Berkeley on how one integrates philosophy with mathematics (especially from a Christian 

perspective). I also believe that many have slighted the significance of Berkeley’s work because 

they misunderstand and confuse his motivations. It has been argued that Berkeley undertakes the 

challenge in The Analyst to demonstrate the reasonableness of Christian faith. According to 

Boyer: “The motive prompting his criticisms in The Analyst was as largely that of supplying an 

apology for theology as it was of inflicting upon the proponents of the new calculus a rebuke for 

the weak foundations of the subject” (Boyer, 1959).  I believe this characterization is not quite 

correct. Perhaps Cajori phrases it better: “Mathematicians complain of the incomprehensibility of 

religion, argues Berkeley, but they do so unreasonably, since their own science is 

incomprehensible” (Cajori, 1919). The distinction here is that Berkeley is not setting out to make 

a defense of the Christian faith by setting it over and above the methodology of the calculus, 

rather he is setting out to demonstrate the unreasonableness of Newton’s technique and makes 

use of his platform for a very informal apologetic of Christianity. The distinction may be slight, 

but I believe it is vastly important; as we shall soon see in the following critique of Berkeley’s 

argument put forward by Douglas Jesseph. 
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As the full title of The Analyst informs us, this work was intended to address the question 

of “whether the Objects, Principles, and Inferences of the modern analysis are more distinctly 

conceived, or more evidently deduced, than Religious Mysteries and Points of Faith.” Berkeley 

famously concluded that the methods of the modern analysis compare unfavorably with those of 

revealed theology, so that an “Infidel Mathematician” cannot consistently reject religion for its 

incomprehensible mysteries while holding up the calculus as a model of correct and convincing 

reasoning (Jesseph, 2007). For Berkeley the degree of faith in calculus is the same as in 

Christianity. Berkeley had admitted that the calculus is useful for solving problems but at the 

same time recognized that its basis was an inconceivable notion. This seems like a strikingly 

similar starting point as Berkeley’s reasons for Christian faith. “Berkeley’s grounds for belief in 

God take the form of an inference to the best explanation that begins with facts about our sense 

experience (namely, that we do not cause our own sensations, that unperceived objects persist, 

and that the sense of vision has the structural characteristics of a language). From these facts, he 

concludes that we are justified in believing that a supremely powerful benevolent spirit (i.e., 

God) is the cause of our sensations, because the order, coherence, and reliability of our 

perceptions cannot reasonably be explained any other way” (Jesseph, 2007). Why would 

Berkeley undertake the argument such as the compensation of errors when it would appear he 

has a different strategy for justifying calculus at his disposal within his own philosophy? As 

Douglas Jesseph goes on to state the question: 

 

We might imagine a devout mathematician reasoning thus: “Whenever I use the calculus, 

I find I get correct results. The method itself presupposes entities very unlike those I 

typically encounter in mathematics, and I can’t actually claim to have a clear notion of 

just what they are. Nevertheless, the best explanation of the order, coherence, and 

reliability of my mathematical results is that there really are such things as fluxions, 

evanescent increments, or infinitesimals.” It is worth pointing out that the 

incomprehensibility of fluxions should pose no great barrier to this strategy. It is, after 

all, a fundamental point of orthodox theology that God is incomprehensible, and 

Berkeley’s grounds for believing in God certainly don’t imply that we have a full 

comprehension of the divine essence. Why not have faith in fluxions, or believe in the 

ghosts of departed quantities? Compared to the failure that is Berkeley’s thesis of 

compensating errors, this looks pretty attractive (Jesseph, 2007). 

 

Ultimately the answer is that in Berkeley’s view, mathematics is in a different 

compartment of knowledge from first (theological) philosophy (Johnston, 1923). The result is a 

fundamental difference between mathematics and theology: theology deals with mysteries 

beyond (but not contrary to) human reason, while mathematics deals only with things clearly 

conceived and evident to reason (Jesseph, 2007). Though for Berkeley there may be as much to 

take on faith in calculus as there is in Christianity, he does not grant them both the same esteem. 

Though Berkeley uses The Analyst to discuss both faith and mathematics, his goal is not to 

emphasize them both equally. 

Perhaps it will be instructive to make an analogy between Berkeley’s approach in The 

Analyst and the approach taken by another great Christian thinker, the Apostle Paul in his first 

letter to the church at Corinth. Paul became all things to all men, so that he may by all means 
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save some (1 Cor. 9:22). The position he takes may not be one he personally espouses so long as 

it is not contradictory to the Gospel and it can be used in spreading the message. A key 

argumentative technique of Paul’s epistle to the Corinthians is his use of what have been termed 

“Corinthian Slogans.” Using this technique, Paul concedes a slogan common to the Corinthians 

(such as “all things are lawful for me…” in 1 Cor. 6:12) that he does not believe is true. He then 

proceeds to demonstrate that if it were true, it would lead to problems (“…but not all things are 

profitable”). Paul is essentially saying that even if what the Corinthians believed was true, they 

should be able to see that it would lead to a contradiction. In a similar fashion Berkeley uses The 

Analyst to point out that if a mathematician believed in fluxions (even though he shouldn’t) then 

it would be contradictory to deride religious belief for its lack of reasonableness. And again in 

the vein of the Apostle Paul, who was not satisfied at pointing out contradictions but spent 

considerable effort to demonstrate how the Corinthians needed to correct their beliefs, Berkeley 

demonstrates how the view of fluxions needed greater rigor in order to meet the standards of 

mathematics. Though his offering of the compensation of errors argument was clearly not 

divinely inspired, his methodology seems to be taking a page out the writings of Paul: truth must 

be established prior to practicality. 

He doesn’t use an argument that calculus should be taken on faith because his theology 

and apologetic concerns do not allow him to make such an argument. His goal is not to come to 

the conclusion that fluxions work and therefore should be taken on faith like a religion. His goal 

is to point out that fluxions work, so the lack of rigorous argumentation put forward in their 

defense needs to be remedied, a goal eventually accomplished by Robinson (as detailed below). 

In this process he throws in for consideration the fact that if one believed the argumentation for 

fluxions was already rigorous enough, then they should not belittle religion as being devoid of 

sound defense, since this would not be correct thinking by their standard of ‘sound.’ Berkeley’s 

goal is not to demonstrate how religion is logically superior to mathematics, but to point out the 

logical flaws in the calculus. Hence his quote in The Analyst of Luke 6:41-42: 

 

Why do you look at the speck that is in your brother's eye, but do not notice the log that is 

in your own eye? Or how can you say to your brother, 'Brother, let me take out the speck 

that is in your eye,' when you yourself do not see the log that is in your own eye? You 

hypocrite, first take the log out of your own eye, and then you will see clearly to take out 

the speck that is in your brother's eye. 

 

In the end, both people in Jesus’ illustration have something in their eye. The point is that 

one person has the bigger problem and doesn’t realize it. Mathematics in Berkeley’s view is 

meant to deal with things evident to reason while theology goes beyond reason (not to say it is 

unreasonable). If a mathematical theory has a logical (truthful) flaw, this is the greater problem. 

Also, it might be said that if Berkeley were to argue that mathematical principles are to 

be taken on faith, would this not greatly reduce the uniqueness of the Christian faith? Would 

Christian faith then appear as something undertaken solely because it is useful? By avoiding a 

claim to faith in mathematics, Berkeley is demonstrating his recognition of the primacy of 

theology which is the foundation for his worldview and life work. 
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Historical Implications of Berkeley’s Critique and the Development of Nonstandard 

Analysis 

George Berkeley’s publication of The Analyst has been considered the most spectacular 

event in the history of 18
th

 century mathematics. At the very least it must be acknowledged as a 

turning point in the history of mathematical thought in Great Britain (Cajori, 1919).  Berkeley’s 

objections to Newton’s conception of an infinitesimal as self-contradictory were well received 

from a mathematical point of view (Boyer, 1959). Although Berkeley’s arguments based upon 

the inconceivability of infinitesimals lose their force in the modern view of the nature of 

mathematics, they made obvious the need for a logical clarification of many of Newton’s terms. 

Berkeley’s critiques were successful in making this fact appreciated. Within seven years of the 

publication of The Analyst in 1734 there appeared some 30 pamphlets and articles which 

attempted to remedy the situation (Boyer, 1959).  

Berkeley’s objection is based on understanding the work of Newton and Leibniz in a 

static fashion with dx a small but fixed quantity. To overcome Berkeley’s argument, dx needed to 

be considered as a variable, concentrating not on the given function but rather on the process of 

approximation that arises when dx approaches zero. A rigorous mathematical theory of 

approximation processes was needed to defend against Berkeley’s objections. Neither Newton 

nor Leibniz addressed this issue in their respective original works. It was not until Cauchy 

developed the key idea of the limit, and a few years later when Weierstrass provided a formal 

definition of this notion, that the calculus was placed on sound foundations (Devlin, 1998). 

It can be argued that this process of refinement, that took nearly 100 years after 

Berkeley’s critique was published, originated in Berkeley’s work. Later in the 18th century 

several mathematicians tried to address the questions of foundations that had been raised by 

Berkeley. Four main schools of thought developed, three of which included: infinitesimals, 

limits, and the formal algebra of series. However, the largest school of thought on the 

foundations of calculus was in fact a pragmatic school – calculus worked so well that there was 

no real incentive to worry much about its foundations (Bradley and Sandifer, 2009) – an 

approach to mathematics that this paper is arguing against.    

In 1742, Maclaurin published his Treatise of Fluxions in an attempt to demonstrate that 

Newton’s calculus was rigorous because it could be reduced to the methods of Greek geometry. 

Maclaurin states in the preface that he undertook the work to answer Berkeley’s attack. 

Maclaurin advocates a limit approach to the problem. In 1797 Lagrange addressed the 

foundations of calculus in his Th´eorie des Fonctions Analytiques (Theory of Analytic 

Functions), the subtitle of which states: containing the principles of differential calculus, without 

any consideration of infinitesimal or vanishing quantities, of limits or of fluxions, and reduced to 

the algebraic analysis of finite quantities. The book was based on his analysis lectures at the ´ 

Ecole Polytechnique. Just two years after Lagrange died, Cauchy joined the faculty as a 

professor of analysis and started to teach the same course previously taught by Lagrange. He 

inherited Lagrange’s commitment to establish the foundations of calculus, but he followed 

Maclaurin rather than Lagrange and sought those foundations in the formality of limits (Bradley 

and Sandifer, 2009). In 1821, Cauchy published the Cours d’analyse, to accompany his course in 

analysis. Not only did Cauchy provide a workable definition of limits and a means to make them 

the basis of a rigorous theory of calculus, but also he revitalized the idea that all mathematics 

could be set on such rigorous foundations. Cauchy’s approach to infinitesimal calculus combined 
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of infinitesimals and the notion of the limit. Weierstrass and his (ε, δ) approach eliminated 

infinitesimals altogether. The evolution of thought on the foundations of calculus can be clearly 

seen to flow from Berkeley, to Maclaurin, to Lagrange, to Cauchy, and finally to Weierstrass. 

Thus it was Berkeley’s pursuit of (mathematical) truth and departure from the school of 

pragmatism that led to our contemporary notions of calculus with which we are familiar. 

More recently, Abraham Robinson restored infinitesimal methods in his 1966 book Non-

standard Analysis by showing that they can be rigorously defined. The motivation for 

Robinson’s work was to show how infinitesimals “appeal naturally to our intuition” (Dauben, 

1995). Notice that Robinson was not trying to maneuver around Berkeley’s criticism to obtain a 

more rigorous method. Rather, he addressed directly the quantities that Berkeley labeled as 

“inconceivable” to demonstrate how they can indeed be conceived and then applied. Robinson 

believed that if you have an idea that something exists, provide a model. Do not talk about 

infinitesimals vaguely in a meta-mathematical sense – define them explicitly. Robinson was a 

firm believer that a philosophical lens, specifically in mathematical logic, could benefit 

mathematics proper (Dauben, 1995). 

Robinson’s work is addressed more specifically to the shortcomings of the work of 

Leibniz rather than Newton, the subject of Berkeley’s critique. However, his criticisms could 

apply to Newton just as Berkeley’s criticisms could apply to Leibniz. Perhaps the more 

important connection to Berkeley can be seen in that Robinson’s motivation to address the topic 

was inspired by the work of Berkeley. Robinson felt compelled to examine the history of 

mathematics (in part) to help justify his own attempts to comprehend the infinite. He appreciated 

philosophical objections to the infinite and to infinitesimals (Dauben, 1995). He considered at 

great length the opposition to the infinite in the writings of Locke and Berkeley. He wrote of 

Berkeley: “it is in fact not surprising that a philosopher in whose system perception plays the 

central role, should have been unwilling to accept infinitary entities” (Robinson, 1966).  

Though Robinson’s own philosophies toward mathematics varied depending on the 

subject and the time period of his life, it is interesting to note that his key work, Non-standard 

Analysis, was published in the series “Studies in Logic and the Foundations of Mathematics,” 

whose editors included L. E. J. Brouwer and Arend Heyting. Brouwer and Heyting are the 

prominent faces of a philosophy of mathematics known as intuitionism (Shapiro, 2000). 

Intuitionism, like many philosophies, can vary in its individual statements, but the main 

underlying assumption of the movement is that mathematics is primarily a mental activity. The 

mathematician’s main tool is not pen or paper, but her mind. This lines up very well with 

Berkeley’s way of envisioning mathematics specifically and knowledge in general. It is clear that 

Robinson’s work was influenced by the work, and philosophical approach, of Berkeley. 

Robinson characterized Leibniz’ belief in infinitesimals as: a useful fiction in order to 

shorten the argument and facilitate mathematical invention (or discovery). The reason for the 

eventual failure of the theory of infinitesimals is to be found in the fact that neither Leibniz nor 

his successors were able to state with sufficient precision just what rules were suppose to govern 

their system of infinitely small and infinitely large numbers (Robinson, 1966). What was lacking 

at the time was a formal language which would have made it possible to give a precise 

expression of, and delimitation to, the laws which were supposed to apply equally to the finite 

numbers and to infinitely small and large numbers as well (Robinson, 1966). What Robinson’s 
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nonstandard analysis neatly avoided was the problem for which Berkeley had condemned 

Newton – namely that his infinitesimals were the ghosts of departed quantities (Dauben, 1995). 

Robinson tackled infinitesimals by dealing with equivalence rather than equality. 

Nonstandard analysis is concerned only with the equivalence of two elements (a ≈ b) which does 

not require a = b, but only that a is infinitely close to b, i.e. that a – b is infinitesimal. 

Consequently nonstandard analysis only asserted that dy/dx ≈ f ´(x).  

The following are some definitions of nonstandard analysis (Stewart, 1996). Much like 

the natural numbers were expanded to include reals, and then reals were further expanded to 

include complex numbers, Robinson now defines the hyperreal. A hyperreal is infinitesimal if it 

is smaller than all positive standard reals. Anything not finite is infinite and anything not in R 

(the set of real numbers) is nonstandard. Every finite hyperreal x has a unique standard part, 

denoted by std(x). This again is similar to every complex number having both a real and 

imaginary component. This std(x) is infinitely close to x; that is the expression x – std(x) is 

infinitesimal. Each finite hyperreal has a unique expression as standard real plus an infinitesimal. 

In nonstandard analysis there are actual infinities and actual infinitesimals. They are constants 

and not Cauchy-style variables. It’s as if each standard real is surrounded by a fuzzy cloud of 

infinitely close hyperreals, its halo, and each such halo surrounds a single real, its shadow.  

Robinson justified his method from the perspective that once irrational numbers were 

accepted, there was no reason not to admit other consistent concepts of numbers that drew upon 

infinitary processes in a similar way (Dauben, 1995). Although this might seem cumbersome 

notationally, the more complex formalism of nonstandard analysis was but a small price to pay 

for the removal of inconsistency. 

To see this removal more clearly, we can apply Robinson’s notation to Newton’s 

calculation of the fluxion (derivative) as described above (Stewart, 1996). Specifically we can 

draw our attention to steps (5) and (6) on page 3. 

 

  

  
       

(    )      

 
          (5) 

Because dx is infinitely small in comparison with x, the terms containing it can be 

disregarded: 

  

  
                (6) 

Using Robinson’s notation, (5) now becomes: 

  

  
           

(    )      

 
          (5*) 

where x is a standard real and dx is any infinitesimal. 

 

By Robinson’s definitions, (5*) leads directly to (6) without dx having to be disregarded. 

In other words the derivative is defined as the standard part of the ratio expressed in (5). The 

idea is perfectly rigorous, because std(x) is uniquely defined. And it doesn’t just disregard or 

forget about the “extra dx”; it is removed it altogether. Nonstandard analysis does not, in 

principle, lead to conclusions about R that differ from those in standard analysis, rather it is the 
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method and the setting in which it operates that are nonstandard (Stewart, 1996). Robinson 

viewed nonstandard analysis from a formalist point of view syntactically (formalism being the 

philosophy that views mathematics as nothing more than a game or language with rules to be 

followed): he had not introduced new entities but “new deductive procedures” (Dauben, 1995). 

The question then becomes what is the point of nonstandard analysis if it does not lead to 

new conclusions? How can it be said that Berkeley’s influence has led to more mathematical 

applications? Stewart summarizes the impact of nonstandard analysis and makes a comparison to 

the original work of Newton: 

Any theorem proved by nonstandard methods is a true theorem of standard analysis (and 

therefore must have a standard proof). But that doesn’t tell us how to find the standard 

proof, nor does it give any idea whether the nonstandard proof will be shorter or longer, 

more natural or more contrived, easier to understand or harder. As Newton showed in 

his Principia, anything that can be proved with calculus can also be proved by classical 

geometry. In no way does this imply that calculus is worthless. In the same way, the 

correct question is whether nonstandard analysis is a more powerful piece of machinery. 

That’s not a matter for mathematical argument: it has to be resolved by experience. 

Experience suggests quite strongly that proofs via nonstandard analysis tend to be 

shorter and more direct (Stewart, 1996). 

Nonstandard analysts have since made advancements in perturbation theory, computer 

graphics, polynomial equations, fast-slow flows, geodesics, boundary value problems, boundary 

layer flow, stochastic differential equations, and spin systems in mathematical physics. From 

Stewart’s analysis, perhaps another (and promisingly fruitful) application of nonstandard 

analysis is in pedagogical practice. It is clear that Berkeley’s critique of the calculus has 

produced more mathematical applications than (most likely) would have been developed if 

Newton’s fluxions had been accepted solely for utilitarian reasons. To argue otherwise would be 

akin to arguing that calculus was no new mathematical application compared to geometry (at 

least according to Stewart’s analogy).  

Conclusion 

This paper has demonstrated that George Berkeley’s philosophy of mathematics was 

deeply intertwined with his practice of mathematics. These philosophical convictions are what 

drove him to attack the methods of Newton in The Analyst, in the face of the widespread utility 

of the calculus. By not giving in to pressure from his contemporaries to accept the calculus 

because of its practical applications, Berkeley set the stage for the refinement of the calculus and 

then, surprisingly, even more practical applications of the theory. Berkeley’s denial that utility 

implies truth ultimately led to the limit definition of the derivative which sidestepped the 

problem of infinitesimals. It also led to Robinson’s Non-standard Analysis which gave a rigorous 

definition of infinitesimals and presented them as something that can be intuited and used 

constructively in mathematical applications. We have seen how Robinson’s work was heavily 

influenced by Berkeley’s thought and how it can ultimately be categorized in a similar vein: both 

Berkeley and Robinson recognized the need for the integration of philosophy and mathematics. 

Making philosophy subservient to the practice of mathematics and believing that philosophy is 

most useful as a retroactive tool for describing mathematical practice, will (ironically) never lead 

to rich and fruitful discoveries. Only by making use of philosophy to interpret and illuminate the 

intellectual enterprise of mathematics can we truly realize the fullest applications of truth to life.  
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In addition, this paper has demonstrated that George Berkeley’s philosophy of 

mathematics was influenced by his theological convictions. This can be seen in the clear 

relationship between his opposition to abstractionism in mathematics and his response to Locke’s 

account of knowledge that was undeniably driven by religious concerns. The interconnectedness 

of Berkeley’s mathematical philosophy and his theology can also be seen in the apologetic 

opportunity he takes in The Analyst, and in his clear demarcation between theological pursuits 

and his secondary interest in mathematics. In the philosophy of George Berkeley we find a man 

of faith who is in the world but not of it (John 15:19); his theological convictions inform his 

philosophy while remaining distinct. For Berkeley, all Christian endeavors, including 

mathematical ones, should be driven by an apologetic for the faith. 
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1
 I liken this to Stewart Shapiro’s argument for seeing an interrelatedness between philosophy and 

mathematics over and against the view that he terms philosophy-last-if-at-all in Thinking About Mathematics. (New 

York: Oxford University Press, 2000), 14-15. 
2
 The title of “infinitesimals” is referred to only by Leibniz. Though Newton and his proponents claim 

to have a much stronger proof of analytic calculus because they avoid the terminology of infinitesimals, Newton’s 

proofs nevertheless employ the same essence; a quantity so small that it can be disregarded as equaling zero.  
3
 The notation for the increment “dx” and “dy” (or a small change in x and small change in y) was 

represented instead by “o” in Newton’s derivations. These notations however were used by Leibniz and are perhaps 

more recognizable by modern readers. These terms describe the same quantities to which Newton referred. 
4
 The following description of Locke’s account of knowledge is taken from Douglas Blount 

(unpublished course notes in ST625 History of Philosophy, Dallas Theological Seminary, Fall 2008).  


