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Abstract

The philosophy of mathematics has provided insight on questions of foundations and

mathematical truth; however, it has not been very fruitful in guiding the practice of mathematics.

This paper attempts to find points of contact between a Christian worldview and the choice of

mathematical projects and methods. Three areas are considered: (i) dubitability in current research,

(ii) the intrinsic value of contemporary mathematics to contemporary society, and (iii) the

affirmation of human value in the use of mathematics. Finally, a framework for valuing mathemat-

ics is proposed as an encouragement to think more deeply about how a Christian might choose a

mathematical topic.



1. Introduction

This paper began as an attempt to give an account for my research in the mathematical

sciences.  As I read in the area of philosophy of mathematics, I was struck by how little influence it

seems to have on the actual practice of mathematics.  This literature is very helpful in understand-

ing the changing role of postulates, culminating in non-Euclidean geometry and the dethroning of

rationalism, or the turn-of-the-century search for logical foundations and how it was overtaken by

Godel and by postmodernism in general.  But it is not very helpful in guiding or justifying what

most of us do in mathematics.

It is particularly distressing that Christian perspectives on the philosophy of mathematics do

not offer much guidance.  In Christian thought one particularly expects normative guidelines. 

Certainly, some general motivations have been given: that all truth is God’s truth, studying

mathematics can glorify God by uncovering the truth he created, and that perhaps we can learn

something of the nature of God by studying the nature of mathematics.  But how do we decide

what mathematics to do, or how to approach it?  And have our motives kept up with the dramatic

changes in mathematics and society?  Are our motives consistent with our Christian worldview?

By considering three issues that arise in the practice of mathematics, I will attempt to

demonstrate how answers to these questions can be shaped by overtly Christian values.  The three

areas are (i) dubitability in current research, (ii) the intrinsic value of contemporary mathematics to

contemporary society, and (iii) the affirmation of human value in the use of mathematics.  Before

addressing them, I will try to lay my philosophical cards on the table by making some worldview-

level assertions that relate to mathematics.  Finally, I will suggest a framework for valuing specific

projects.  Hopefully this framework will be provocative.  From within the world of mathematics,

constructing a value framework may seem irrelevant, since there are well-codified institutions for

evaluating mathematical work and a great part of one’s education is spent learning to recognize

what counts as good mathematics.  But if the starting point is God’s kingdom, such a framework

may be much needed.
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2. A Philosophical Starting Point

It seems to me that a Christian world view provides a strong basis for a philosophy of

mathematics. It begins by recognizing God as the creator and the source of all truth.  There is a

very clear Christian answer to why mathematics works.  God’s creation is orderly; it possesses a

uniformity of cause and effect1 and is a consistent reflection of the unity of God’s truth.  The

omniscience of God includes all mathematical knowledge that we might obtain.2  Under this

perspective, truth is absolute, unchanging, consistent, and unified.  Contradiction, or even separate

bodies of knowledge that cannot be unified, are disallowed by the unity of God’s truth.  Mathemat-

ical knowledge, with its richness and consistency, is made possible by the richness and consisten-

cy of God’s nature and creation.

Many Christian writers take the ontological position that mathematical objects exist outside

of our conception of them, either as a kind of Platonic form or in the mind of God.  I would

suggest that it is not necessary to take a position on the question of existence.  Within the view of

truth sketched above, the key questions about mathematical knowledge can be answered without

deciding the ontology of what we use only semantically.  The alternative to asserting that numbers

exist, however, is not an uninterpreted formalism that denies the truth of mathematics but some

other interpretation of mathematics.

The key point is that mathematics is a description of the orderly creation of God.  Attempts

to explain why the world can be described so successfully using mathematics will inevitably return

to the question of God’s nature and why he chose to create what he did.  Poythress (1974)

advances theological arguments that God’s nature is quantitative.  I prefer to accept the evidence in

creation and our ability to understand it using science, for “Shall what is formed say to him who

formed it, ‘He did not make me’?” (Isaiah 29:16) and “Does the clay say to the potter, ‘What are

you making?’” (Isaiah 45:9)  We can view the study of mathematics, then, as investigating God’s

truth, without fear that what we are seeking is illusory or contradictory. 

The question remains of whether we are capable of understanding God’s truth, in

particular, will human mathematics live up to the qualities described above?  His creation is not

only orderly, but capable of being governed and improved by people.  Our image bearing is the

key to the success of mathematics.  In applications, “The a priori capability of man’s created nature

really corresponds to the a posteriori of what is ‘out there,’ because man is in the image of the One

who ordained what is ‘out there’” (Poythress p. 185).  Internally, “It is our image bearing which

gives us the mental equipment to do mathematics”3.  The limitations of our mathematical reasoning

that provoked the crisis in foundations can be understood in terms of our finiteness and fallenness
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while still asserting the unity and constancy of God’s truth, including his omniscient knowledge of

mathematics.  Mathematics is subject to error and revision.  We are not perfect proof checkers, and

sometimes fail to play by our own rules.  We cut corners and fail to formalize, leading to an

imprecise notion of proof, and our formal systems are sometimes inadequate in conforming to

God’s truth and his creation.

  While our image bearing gives us the ability to do mathematics, it does not make our

mathematical knowledge the one correct description of reality.  I would suggest the following

answer to how we know mathematics is true, based on  Barker (1964).  He proposes an analytic,

non-literalistic interpretation of number theory.  Some number theory is analytic: It is known to be

true a priori because it is the result of correct counting, which is in no way empirical, but relies

only on a correct understanding of number words.  Counting is a fundamental mental capability. 

Basic logic is also inescapably true, and so is considered a priori as well.  Barker also suggests that

counting is not reducible to logic, and arithmetical laws should be viewed as statements about

counting, not logic or sets.  They are analytic in the sense that only a knowledge of language is

needed in order for us to know that they are true; they do not require synthesis with another kind of

knowledge.  At any rate, some of mathematics is known to be true a priori because it follows from

counting and logic.  This part of mathematics is similar to constructivist mathematics, and its

epistemological basis is similar to intuitionism, with counting taken as innate rather than numbers.  

The rest of mathematics, such as irrational numbers and infinite sets, have the status of

models or theories.  As in the other sciences, they are not the only possible formulation.  Just as

several scientific theories may be useful in explaining empirical observations, several formulations

or extensions of mathematics may be useful.  This extension of mathematics need not be merely

uninterpreted formalism, though parts of mathematics are certainly best described that way.  It can

have the status of a model: When combined with science it makes statements about the physical

world, or it might make statements about the “counting” part of mathematics.  These statements are

not undubitable because they are part of a model and rely on its axioms.  A good example to keep

in mind is the Euclidean model of space.  In summary, I am taking an a priori or intuitionist view

of arithmetic and an empiricist view of extended mathematics.    

3. Dubitability in Current Research

Contemporary philosophy of science, particularly the work of Kuhn and Popper, and its

application to mathematics by Lakatos (1976), leads to a view of scientific knowledge as dubitable

and subject to change.  Instead of being the result of impartial empirical observation and reasoning,
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scientific theories are seen as influencing observation and themselves being influenced by a wide

variety of societal factors and worldview presuppositions.  Knowledge does not just progress

steadily; theories are replaced when they become unwieldy and the community sheds one paradigm

and adopts another.  An illusion of steady progress is created by the desire for unified scientific

explanations.  Particularly in mathematics, there is the tendency to reinterpret old results to fit them

into the new paradigm.  Euclidean geometry is still “true” if we interpret the parallel postulate as an

arbitrary assumption rather than a self-evident fact.

Experience and faith commitments lead me to embrace a limited dubitability.  Like most

mathematicians, I do not think that most mathematics, including the area I work in, will be affected

by  Godel’s incompleteness or erased by future “revolutions”.  However, I expect mathematics to

change and be adjusted.  Propositions that are widely believed to be true, such as “P is not equal to

NP” (there are no fast algorithms to a certain collection of hard combinatorial problems), may be

false.  Results involving subtle concepts of infinity may be reinterpreted to have different

assumptions or proof methods.  Applications will certainly change.

 Dubitability seems germane to many practical methodological questions.  Should one use

the computer to conduct numerical tests and draw conclusions from them, do symbolic manipula-

tion, or execute a long proof?  Is it wiser to spend time checking results of others or to assume that

they are correct and use them?  Is it more effective to focus on a well-defined field and work out

the implications of prior definitions and partial results or to try decidedly different definitions,

problem or methods?  How does one choose between the modeling approaches that can be used to

describe a physical system and translate it into mathematics?

In my specialty of operations research, dubitability has increased because of the interweav-

ing of computer experiments with proofs.  The question of whether an algorithm converges may be

answered by proof or by numerical experiments on a computer.  Determining the speed of an

algorithm on typical problems is almost always done by computer experiments, since the

construction of algorithms outpaces the ability to analyze their rate of convergence.  After an initial

period where computer results were being reported in a variety of ways that were impossible to

reproduce or verify, e.g., “it ran in five minutes on my computer”, standards were instituted for

the reporting of computer results.  These standards help to define the particular problem that was

solved and the amount of computation required, so that in principle the results could be verified. 

However, the standards are only being used in the small part of my field that focuses on finding

faster algorithms for some very old, well-defined problems.  Much of the “cutting edge” looks for

algorithms for an expanding list of new problems, or uses the computer to gain other insights into

a problem.  In these areas there are essentially no standards being used for reporting computer
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work.  How reliable is it?  Anecdotal evidence suggests that computer-generated numerical results

in this field are often inaccurate and occasionally just plain wrong.

The fundamental shift that seems to have occurred is that instead of verifying results by

exact replication, the standard for verification has become an inexact one of similarity.  For

example, in a recent research paper I showed a computer-calculated optimal policy for a model of a

manufacturing system. The policy consists of a two-dimensional lattice with each point labeled as

producing nothing, producing type 1, or producing type 2.  Another researcher at Stanford solved

the same problem, using a slightly different algorithm, and obtained the same policy.  I took this as

verification of my computer work.  In fact, there were many intermediate calculations that I know

must have differed, because we used many different approximations.  The fact that we obtained the

same answer does not guarantee, or even strongly suggest, that we would obtain the same answer

on other cases.  The algorithms we used will never be checked in a detailed sense because they are

not in themselves of interest.  The research goals were to test other, approximate methods and to

gain insights into what the policies look like.  This bit of knowledge has now been added to the

vast pool and will probably never be checked further.  Is it correct?  Well, the results are probably

close.  But if they are used in certain ways, say as counterexamples to “disprove” a conjecture,

then the level of confidence in our mathematical results has taken a great blow.  Of course, the

failure to verify or duplicate numerical results also creates a much larger vulnerability to scientific

fraud.

Dubitability has also increased with regard to analytical results.  Davis and Hersh (1986)

describe mathematical justifications as rhetoric because they are intended to convince a mathemati-

cian in that specialized field.  In addition to the limitations of logic and proof that make a verifica-

tion from first principles or logic impossible, there are pitfalls that have nothing to do with

foundations.  As specialization and the volume of publication increases, the fallibility of what is

published also increases.  In the mathematical sciences, writers and referees may have less

background in mathematics and less commitment to a professional principle of accuracy.  Results

that are useful in the computer age may be much lengthier and messier than what was viewed as

publishable in an earlier age.  I have twice encountered results that had made their way into books

that were incorrect in significant ways.  In one case a proof neglected some cases and the theorem

needed to be restricted.  In another a lengthy algebraic result, not derived in the book or its

references, contradicted a property stated in the book; believing the algebra and other researcher’s

examples that supposedly refuted the property threw me off track in my research.  These examples

do not threaten the core mathematical results that have been repeatedly scrutinized.  No one thinks

such core results will be refuted by checking the algebra.  Rather, their effect is to change my
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levels of belief, or what I accept as true, in my work.  To practice mathematics at all I must believe

that it is possible to know mathematics; that my reasoning will not lead to contradictions and that I

can separate truth from falsehood.  Yet I have learned to hold results outside of this core (and much

of what I know is outside of the core) at a slight distance.  I do not have time to check everything

that I use or to check my results in every conceivable way.  When contradictions do arise, I am

now more inclined to suspect published results that led to the contradiction.  I do not have a very

clear conception of what should be taken as core, but I would tend to describe it narrowly.

This view of mathematics, including a limited dubitability, seems to have implications for

choosing research directions.  First, it places a premium on making sure we understand something

before we use it.  When analyzing models, the focus would be on understanding simple models

rather than doing computation with complex models that are potentially more accurate but not

understood.  Next, it justifies mathematical rigor in the applied areas where such rigor is often left

behind, since this rigor may overturn what was considered obvious.  Of course, such rigor is very

costly and we must have faith in our ability to tell which stones to look under.  Finally, I think we

should hold the paradigms and research programs of our specialties as dispensable.  For example,

in my field there are three approaches to modeling a manufacturing system: discrete, continuous

with discrete stochastics, and continuous with continuous stochastics.  A researcher’s choice of a

model depends mostly on who their adviser was, not which is best in a particular situation.  

Pressures to become very adept at just one approach should be resisted.  Like proof methods, we

need to know a variety of modeling approaches to pick the one that works best in a given situation.

On the other hand, questions such as whether to use a continuous or discrete model are often a

matter of taste--either will do.  In this case, knowledge of the different approaches can reduce

duplication of effort.  There really is no justification for redoing an earlier paper using an alternate

modeling philosophy.  More important, it seems to me, is to look beyond the assumptions of a

research program.  We should ask what other problems or models not being considered are worthy

of our attention and carefully consider what makes a problem of interest.

4. Rethinking Intrinsic Value

One approach to justifying mathematical work, in the spirit of G. H. Hardy (1940), is to

eschew usefulness as a motive and give justifications very similar to those used for art.  Timeless-

ness, beauty, and particularly truth are emphasized.  I will call this approach intrinsic value.  A

second approach is to point out the many historical examples where “pure” mathematics was later

put to unanticipated use, so that no mathematics can really be labelled pure or inapplicable.  Two
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frequently cited examples are hyperbolic geometry in general relativity and finite groups in

elementary particle theory. Essentially the same reasoning--that there may be unexpected applica-

tions--is used to justify basic science.  I will argue that today’s mathematics and today’s social

values require a rethinking of the intrinsic value argument, as well as a more nuanced view of

potential applications.

Hardy’s defense includes the assertion that mathematics is a relatively harmless discipline. 

In the isolationism and the rigid leisure class of 1930’s England, such a negative justification was

somewhat persuasive.  But justifying mathematics today requires a much stronger argument.  In

the intervening half a century, society--and normative concepts of a good society--have shifted

toward an economic perspective of interdependency and productivity.  Society no longer accepts

the notion that doctors should decide how much is spent on health care, that NASA should decide

how much is spent on space, or that scientists should decide how much is spent on research. 

Symbolic of this change was the cancellation of the superconducting supercollider project, which

clearly offered the potential for new knowledge.  The productivity pressures being faced in other

occupations are beginning to be felt in academia.  In mathematics, teaching is being reformed and

research funding is being scrutinized for tangible results such as educational impact or collabora-

tion with industry.  Corporate and foundation funding is generally even more focused on

anticipated applications, rather than the intrinsic value of mathematics.  These pressures do not

simply reflect temporary budget difficulties.  They also demonstrate the shift toward a society in

which professions are subject to external scrutiny and the resulting pressures for productivity and

societal value.

Certainly these pressures affect how funding is pursued. But should they influence how we

value mathematics?  In particular, how well do arguments for the intrinsic value of mathematics

line up with a Christian worldview?  Faculty at a Christian college, having acknowledged God’s

sovereignty in their life, are under an obligation to work for God’s kingdom in their scholarship. 

Personally, I cannot accept the blanket statement that any research, no matter how arcane, can be

kingdom work if it seeks to uncover more of the truth that God has created.  The view that any

research is worthwhile, even worshipful, seems to overlook the realities of human suffering,

limited time, and limited resources.  Thus, whatever value mathematics has must be balanced

against other priorities.  Mathematics is not done in a vacuum.

While expectations have risen in the last half century, the changing face of mathematics has

also affected the argument for intrinsic value.   The maturing of mathematics and its focus on

computation have had significant affects.  Keith Devlin (1997) addresses the issue of maturity in

his article “The End of Mathematics”, where he distinguishes between “enlarging our fundamental
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understanding of the universe” and “tidying up the loose ends”.  Large extensions, fueled by

applying mathematics to new domains, cannot proceed indefinitely.  Indeed, he writes that “The

Golden Age of mathematical expansion may well be over.”  He also makes an argument of

diminishing returns in mature sciences such as chemistry.  In mathematics,  with fragmented

subdisciplines and a huge volume of publications, it becomes very difficult to argue that a

particular piece of research contributes in any meaningful way to the pursuit of truth.  Certainly the

notion of diminishing returns applies to the current situation in mathematics.

The resurgence of computation in mathematics also seems at odds with valuing mathemat-

ics as the pursuit of fundamental truths.  The computer has coupled mathematics much more

closely with applications.  Now, it is possible to ask fundamental questions about computational

mathematics.  In my specialty of operations research, a good example is whether or not there is a

polynomial time algorithm for linear programming.  However, most research in these areas is

driven by the goal of computing, not the pursuit of fundamental truths.  Even the fundamental

questions in these areas might not qualify as “deep”.  Would a mathematician without a computer

be interested in them?

Another aspect of intrinsic value is the unchanging, or timeless nature of mathematical

facts.  Mathematics has an immutability to it.  Taking the philosophical position that mathematics

discovers God’s eternal, unified truth, mathematics can have profound value.  When this reasoning

is applied to current work, however, two problems appear.  First, most mathematicians are

working on what I described earlier as extended mathematics, not arithmetic.  Its status, I argued,

is more that of a model than a priori truth.  It may be internally consistent and have the standing of

a successful scientific theory, but cannot claim to be the unique description of a pre-existent truth. 

In this view, rather than saying God created infinite sets, one would say God created a world that

can be understood through infinite sets.  The more sophisticated the mathematical object, the more

difficult it is to assert that it has an intrinsic, appointed place in the creation.  A second problem is

that these objects, and the questions being posed about them, often appear to be contingent on

current developments in mathematics or applications.  History is likely to judge much less of

today’s work as “timeless” than in previous eras when the community was smaller and the

questions more basic.  Of course, even the most obscure mathematics can be timelessly true.  But

more fundamental, general results are timeless in a stronger sense.  As the work turns to more

detailed or esoteric questions, some of the timelessness is lost.    

In contrast, the aesthetic aspect of mathematics seems as strong today as ever.  This may be

due to the inexhaustibility of creativity.  One might say there are more elegant proofs than

important theorems.  Beautiful results can be obtained in all branches of mathematics, even if the
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motivation was quite pragmatic.   A concern might be the increased complexity, or “messiness”, of

the problems being solved today.  Long proofs, and particularly computer-aided proofs, are less

likely to command aesthetic respect.  On the other hand, fractal images and computer visualization

have brought great attention to the beauty of mathematics.  

To summarize, intrinsic value cannot be used as a blanket justification for all mathematics

being done today.  It must be applied selectively and balanced against other priorities in God’s

kingdom.  If we view these priorities as primarily social, we must make intrinsic value arguments

that ultimately talk about benefit to society, though in the broadest sense, including artistic and

other kinds of value.  Hence, the ability to communicate the work beyond the specialists takes on

added importance.  One of the criteria that guides mathematical work is relevant here.  Topics are

more credible when they can be simply stated and recognized by non-specialists.  Certain simply

stated problems seem to be relevant because they are an unavoidable test of the machinery. 

Studying these problems helps explore fundamental patterns, building confidence in the mathemati-

cal system or uncovering new methods for other problems.  This type of problem should not

involve generalization or new definitions, but merely ask questions about objects that are

considered important for other reasons.  

5. Affirming Human Value

Many mathematician’s view of their work seems quite devoid of moral values. They might

have an uneasiness about working in the defense industry, a vague hope that their research will

contribute to the progress of society, and a commitment to truth.  When applications are consid-

ered, one might think that the field itself--medical, defense, etc.--has moral content but the mere act

of applying mathematics to it is morally neutral.  This common response is what Poythress calls

the dogmatism of neutrality:  Mathematics is objective and morally neutral, so its application does

not raise any ethical questions that are not inherent in the area to which it is applied.  In fact, there

are a number of ways in which using mathematics has profound implications.  One concern is

dehumanization.  For mathematicians, Davis and Hersh 1986 are surprisingly alarmist on this

issue: “When a man steps up to a bakery counter and takes a number, he is sped on his way, and

that is good.  But when he takes a number, he becomes, in part, a number, and there’s the rub.”4 

Dehumanization is not new, and the notion of information systems and computer technology as

dehumanizing and replacing human contact can be argued both ways.  More relevant to a world

view is the belief in measurement that accompanies social applications.

The use of quantitative methods to make social decisions, which grew rapidly in conjunc-
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tion with the computer age, brings with it a unique set of attitudes and dangers.  Davis and Hersh

consider the example of standardized testing for college and career placement (p. 93).  The very

process of testing reveals a belief that the quality in question is quantifiable, measurable, and

predictable.  In an attempt to measure something the test creates a new artifact, test-taking ability,

that affects the educational system, spawns its own industry, e.g., SAT preparation, and shapes

our view of people.  Just as a materialist view limits the world to that which can in principle be

quantified and observed, social tools such as placement tests engender a view of the world that is

limited to that which can in practice be measured or mathematized.  “As we mathematize the world,

we proceed to lose or to throw away those parts of the world that cannot be mathematized.  What

isn’t mathematized seems not to exist, even never to have existed.” (p. 98)  The very act of

collecting data about people conveys the sense that they can be quantified and measured.  Applying

statistical theory to them, such as recognizing that characteristics measured from a large group of

people fit a normal or bell curve, suggests that people can be studied using the same methods as the

physical sciences.

The methodology of the decision sciences points out a particular dilemma.  In many

government and business settings, mathematical models do a fairly good job of identifying the key

choices, which become decision variables of the model, and constraints (logical, physical, resource

limitations, etc.).  To guide decisions, a criterion or objective is usually selected.  The model is

then used to find the choices that give the optimal value of the objective, such as the maximum

profit.  The appeal  of the model and the mathematical nature of the process tend to give credibility

to the results.  However, the criterion contains all the difficulties of decision making.  Different

people involved are likely to have conflicting criteria.  The modeler may end up choosing the

criterion because no one else understands the model.  In my field of manufacturing scheduling, for

example, the criterion of minimizing the makespan (the time until the last of a set of jobs is

completed) was once proposed solely because it was mathematically tractable.  It has since led to a

whole school of research with little or no relevance to manufacturing.  Another difficulty is that

optimizing a single criterion may not reflect the way that options are ranked by the people involved.

For example, a manager may not want optimal profit but merely profitability, and have other

criteria for ranking among profitable options.  Mathematicians who do optimization seem almost

professionally trained to ignore these issues. But values simply cannot be avoided when mathemat-

ics is put to prescriptive, decision-making use.

Along with all scientists, mathematicians face the danger of naturalism, thinking that only

the natural world exists because we spend our lives studying it, and scientism, thinking that

scientific knowledge is the only kind of knowledge.  The rare and specialized skills of a mathemati-
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cian make it easy to be more aloof from the affairs of the world than an honest response to God’s

command to love your neighbor allows.  A mathematician may feel that he or she is not quite as

good as other people at doing things outside their profession.  On the other hand, outsiders are

dramatically less adept at doing mathematics.  If the mathematician wants to excel, then he or she

has a strong motive to stick to mathematics.  The academic culture encourages aloofness through

specialization, the solo nature of most research, and the limited rewards for interdisciplinary work.

Even the current efforts at curriculum reform focus on how to teach mathematical problem solving,

not how to relate mathematics to other topics in engineering, biology, or business.

All of these areas point to the need for a broadly contextual framework for thinking about

mathematics.  For the Christian, such a context is even more essential because truth is holistic and

God-given.  This holistic view of truth and an intimate relationship with God is the grounding

from which a person’s life and work can emanate.  Fleshing out such a ground or framework is

largely an individual matter of understanding one’s vocation.  Several principles may be helpful in

shaping a more individual response.  The Christian recognizes that neither the objective level of

truth nor the subjective level of relationship can be fulfilled without the redeeming work of Jesus

Christ.  Christ provides not the key to doing mathematics but the key to understanding its

relevance.  

At the objective level, knowing about God’s truth, his creation, and his love, we can

understand in a deeper way what we are doing when we study mathematics.  In this framework

mathematics can be studied without falling into a false perception of autonomy.  Mathematics

conforms to God’s truth and assists in understanding reality.  Recognizing the transcendency of

God’s truth and his creation relative to our mathematical knowledge prevents naturalism from

creeping into our mathematized world view.  Acknowledging transcendency also fosters a humility

regarding mathematical ways of knowing that reengages us with other disciplines and aspects of

life.

At the subjective level, knowing our role  in Christ’s redemptive work puts a career in

mathematics in a relational context.  Mathematics is relevant not only because it conforms to truth,

but as a human activity that can affirm human value.  We can pursue excellence and give glory to

God, treat people with dignity and compassion, and include in our teaching our understanding of

the nature of mathematical knowledge. Finally, when we solve problems or do research, we can

seek to let the welfare of others influence  our choice of topics.  How a Christian worldview might

guide our choice of topics is considered in the final section.
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6. Choosing Mathematical Topics

In this section I propose some criteria, motivated by a distinctly Christian worldview, that

could be used to choose among mathematical topics in research or the curriculum.  I do not claim

that they are complete or balanced.  However, I suggest that applying an evaluative framework

derived from a worldview, not a set of criteria internal to mathematics, is a worthwhile exercise.

Dissemination.  This is a very common expectation; however, we might be inclined to disregard its

moral value precisely because it is an expectation placed on us by our deans.  Other than training

our minds, our work influences the world through other people.  Telling them about it is just as

important as doing it.  In addition to communicating clearly, we should recognize that advocating

for a good idea is an important job, remembering that models and paradigms compete.  Balanced

against this imperative is the recognition that most of the deluge of published material will not be

used in any significant way or read by many.  Hence, we should seek the form of dissemination

appropriate for our work, which may be the classroom, a departmental seminar, a presented paper,

a conversation with a colleague, or a real application.

Next are four criteria, at least one of which might be expected of our work.

(1) Understanding the nature of mathematics.  Some topics, of course, are good training for doing

more mathematics.  Others point out the nature of mathematics and its limitations, such as

dependency on axioms or formal incompleteness.  Cultivating this understanding is particularly

important to developing a Christian world view that sees mathematical and scientific study as an

activity done in relation to God that conforms to his truth.  History, foundations, and philosophy

of mathematics would be pertinent to this objective.

(2) Simply stated problems.  As noted before, certain simply stated problems seem to be relevant

because they explore fundamental relationships in the mathematical system.  

(3) Actual application.  By this I mean not “applied mathematics” but the use of mathematics to

gain knowledge or produce something in another field.  Such work is inherently interdisciplinary. 

The value of work under this criterion is determined by the end that it serves.

(4) Potential application.  Much mathematical work, including applied mathematics, is justified by
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asserting that it may be used in the future.  Most of it never is.  At the risk of sounding like a

budget cutter, I suggest that we often could know this beforehand, or at least know which work is

less likely to be used.  For applied mathematics, where the intended area of application is known,

we might ask: What sequence of further work would conceivably lead to its implementation?  Who

proposed the model being studied and how close are they to the application? For pure mathematics

we might ask: Is the field unified?  Are constructive results and computation imaginable, or only

existence results?  Does anyone outside of the field know about it, and if not, why?

These criteria can also provide a context for discussion of curriculum revision.  For

example, finding the maximum of a function using the method that we teach in calculus may only

meet criterion (1); it reinforces the relationship between a function’s graph and its derivatives, but

is not used in applications to find a maximum unless the function has parameters or lots of

variables, which we don’t consider.  In contrast, finding the zero of a function by Newton’s

method may meet criterion (1), (2), and (4); (1) because it introduces iterative techniques which are

widely used in applied mathematics, (2) because it is a realistic solution method to a basic

mathematical problem, and (4) because our students may use it doing scientific research or other

work.

I have argued that a philosophic framework of value--and in particular a Christian

worldview--can guide the choice of projects, contribute to some methodological issues related to

dubitability, and help affirm human value in a highly quantified society.  I have asserted that some,

but not all, mathematical work can be seen as valuable to the kingdom of God.  The challenge,

then, is to develop a more conscious scheme for valuing mathematical work, based not upon what

is interesting to the mathematician but what is relevant to our world.
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of a First Conference on Christian Perspectives in the Foundations of Mathematics, Brabenec, R.
L., ed. (Wheaton College, 1977) pp. 39-48.  Poythress argues that they are part of God’s nature,
not his creation, so that he did not choose mathematics from among many possibilities.  In
contrast, voluntary nominalism holds that God had sovereign choice in creation, including
mathematics.
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