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Editor’s Introduction

The twenty-third biennial conference of the Association of Christians in the Mathematical Sciences
was held at Azusa Pacific University from May 31 until June 4, 2022. Thanks go to Bryant Mathews
and his colleagues for all their efforts that went into hosting it.

Many thanks also to the three invited speakers:

• Matt DeLong (Marian University)

– Saving Beauty: On Myshkin, Misery, Meaning, and Mathematics

– Child’s Play: Mathematical Exploration and Exposition at MathPath

Matt DeLong (B.A., Northwestern University; Ph.D., University of Michigan) chairs the
Department of Mathematics at Marian University in Indianapolis. He was awarded the Alder
and Haimo awards for distinguished teaching, and has served the MAA in various capacities:
on the leadership team of Project NExT, as chair of the Indiana Section, and as chair of the
Council on Meetings. Matt is also the Academic Director of MathPath, an advanced summer
program for middle-school students. He has published articles in knot theory, number theory,
mathematics education, and the scholarship of teaching and learning.

• Jason Thacker (The Ethics and Religious Liberty Commission)

– Ethics in the Age of AI: Navigating Emerging Technologies with
Biblical Wisdom

– Always Known, but Rarely Loved: Facial Recognition Technology and the
Nature of Privacy

Jason Thacker serves as chair of research in technology ethics, and director of the research
institute at The Ethics and Religious Liberty Commission of the Southern Baptist Convention.
He also serves as an adjunct instructor of philosophy, ethics, and worldview at Boyce College
in Louisville, KY. He is the author of the forthcoming book, Following Jesus in the Digital
Age (B&H Publishing), as well as The Age of AI: Artificial Intelligence and the Future of
Humanity (Zondervan). He is the project leader and lead drafter of “Artificial Intelligence:
An Evangelical Statement of Principles.”

• Talithia Williams (Harvey Mudd College)

– Power in Numbers: The Rebel Women of Mathematics

– Scam or Scriptural: Could Plant-Based Diets be God’s Healing Mechanism?

Talithia Williams (B.A., Spelman College; M.S., Howard University; Ph.D., Rice University)
develops statistical models that emphasize the spatial and temporal structure of data, and
applies them to problems in the environment. She’s worked at NASA, NSA and the JPL, and
has partnered with the World Health Organization on research regarding cataract surgical
rates in African countries. Faith and family round out a busy life that she shares with her
husband and three amazing boys. Through her research and work in the community at large,
she is helping change the mindset regarding STEM in general and mathematics in particular.
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Two pre-conference workshops were offered on May 31–June 1.

1. Mathematics in Context: Its History, Philosophy, and Connections with the Christian Faith
was organized by Bob Brabenec, Russell Howell, Dick Stout, and Dusty Wilson.

2. Integrating Ethics into your Statistics and Computer Science Courses: Integrated Ethics Labs
was organized by Lori Carter, Catherine Crockett, and Stacy De Ruiter.

The conference schedule is presented in Appendix 1, Appendix 2 gives the abstracts for the various
sessions, Appendix 3 lists information for the individual participants by name, and Appendix 4
organizes them by institution.

The contributed paper sessions had a total of 72 presentations from the 156 conference attendees.
Bryant Mathews has placed many of the corresponding files, in addition to some from other talks,
on Google Drive. Click here to access them. Also on Google Drive are photos taken by a variety
of people throughout the conference. They can be accessed by clicking here.

Not every paper presented at the conference was submitted to this Journal and Proceedings, and
starting with this issue the Journal and Proceedings is accepting papers for consideration that were
not presented at the corresponding conference. The following pages contain all submissions that
made their way through the single-blind review process, each having been scrutinized by a minimum
of two reviewers. Thanks go to the authors for their good work. Too numerous to mention are all
the referees that were involved, but heartfelt thanks go to them for their diligence.

ACMS is now a 501(c)(3) organization, so any monetary gifts to it are tax deductible. The confer-
ence at Azusa Pacific University featured in this Journal and Proceedings was originally scheduled
for 2021, but had to be postponed until 2022 because of COVID protocols. We are grateful to
God that we were able to gather in 2022, despite some COVID infections that occurred during
the conference. Because of the postponement, the ACMS membership voted to change its by-laws
to stipulate that conferences will henceforth be held on evenly-numbered years, D.V. Thus, the
twenty-fourth biennial conference is slated for May 29–June 1, 2024, with Dordt University as the
host institution. Further details can be found at the ACMS website: https://acmsonline.org.

Russell W. Howell (Westmont College)
ACMS Journal and Proceedings Editor
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Formal Differential Variables and
an Abstract Chain Rule

Samuel Alexander (The U.S. Securities and Exchange Commission)

Samuel Alexander completed his Ph.D. in mathematical logic in 2013
at The Ohio State University, with a dissertation about ordinal no-
tation systems applied to the epistemology of machine knowledge.
He did his undergraduate studies at the University of Arizona. His
current position is in finance at The United States Securities and
Exchange Commission. His research interests include mathematical
epistemology, theoretical biology, and reinforcement learning.

Abstract

One shortcoming of the chain rule is that it does not iterate: it gives the derivative of f(g(x)),
but not (directly) the second or higher-order derivatives. We present iterated differentials and
a version of the multivariable chain rule which iterates to any desired level of derivative. We
first present this material informally, and later discuss how to make it rigorous (a discussion
which touches on formal foundations of calculus). We also suggest a finite calculus chain rule
(contrary to Graham, Knuth and Patashnik’s claim that “there’s no corresponding chain rule
of finite calculus”).

1 Introduction

Consider the following statement, uncontroversial in an elementary calculus context (∗): “For all
variables u and v, d(uv) = v du + u dv.” In his popular calculus textbook [11], Stewart says:

. . . the differential dx is an independent variable . . .

So if ∗ really does hold for all variables u and v, and if x is a variable, and if (as Stewart says)
dx is also a variable, then, by letting u = x and v = dx, we get d(x dx) = dx dx + x ddx. We
do not know whether Stewart intended us to make such an unfamiliar-looking conclusion from his
innocent-looking statement, but let’s continue along these lines and see where it leads us. We will
formalize this kind of computation using machinery from first-order logic, and show that it leads
to an elegant higher-order multivariable chain rule.

A weakness of the familiar chain rule is that it does not iterate: it tells us how to find the first
derivative of f(g(x)), but it does not tell us how to find second- or higher-order derivatives of the
same (at least not directly). Our abstract chain rule will iterate: the exact same rule which tells
us df(g(x)) will also tell us dkf(g(x)) for any integer k > 1.

Our d operator has some similarities with the ∆ operator of Huang et al [7]. Our work improves
on theirs in that we explicitly distinguish differential variables from others, so that the operator
we develop better reveals the connection to differentials. For example, in Huang et al, one has
∆1ex0 = ex0x1 and ∆2ex0 = ex0(x2

1 + x2), which is equivalent to our dex0 = ex0 dx0 and d2ex0 =
ex0(dx0 dx0 + ddx0). Besides better emphasizing the connection to differentials, the latter version
should also be more familiar, since we already routinely write things like dex = ex dx in elementary
calculus classes.
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2 Computing Iterated Partial Derivatives: Informal Examples

In this section, we will informally describe a way to compute iterated partial derivatives of a
multivariable function. We will make the method formal in subsequent sections.
Example 1. Compute the differential dd x2 = d(dx2), treating differential variables just like ordinary
variables.

Solution. The differential dx2 = 2x dx involves two variables: x and dx. Thus, d(dx2) will have two
terms, one where we differentiate with respect to x and multiply the result by dx, and one where
we differentiate with respect to dx and multiply the result by ddx:

ddx2 = d(dx2)
= d(2x dx)

= ∂(2x dx)
∂x

dx + ∂(2x dx)
∂dx

ddx

= 2 dx dx + 2x ddx.

Note that when we compute ∂(2x dx)
∂x , we treat dx as a variable independent from x, so it can be

treated as a constant. Likewise when we compute ∂(2x dx)
∂dx , x is treated as a constant.

Example 2. Compute the differential dd ex, treating differential variables just like ordinary variables.

Solution. As in Example 1, since d ex = ex dx,

dd ex = d (ex dx)

= ∂(ex dx)
∂x

dx + ∂(ex dx)
∂dx

ddx

= ex dx dx + ex ddx.

Example 3. Compute dd f(x), treating differential variables just like ordinary variables.

Solution. Just as above,

dd f(x) = d(f ′(x) dx)

= ∂(f ′(x) dx)
∂x

dx + ∂(f ′(x) dx)
∂dx

ddx

= f ′′(x) dx dx + f ′(x) ddx.

In a later section, we will formalize and prove a formal chain rule (Corollary 20). For now, we will
state it informally:
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Remark 1. (Abstract Chain Rule, stated informally) Let T and U be expressions and let x be a
non-differential variable. Assume T , U , and all of their sub-expressions are everywhere infinitely
differentiable. Then

d(T [x|U ]) = (dT )[x|U ],

where the operator [x|U ] works by simultaneously replacing all occurrences of x by U , all occurrences
of dx by dU , all occurrences of d2x by d2U , and so on.

The Abstract Chain Rule can be stated in English: “substituting first and then applying d gives
the same result as applying d first and then substituting, provided that when one substitutes U for
x, one also substitutes dU for dx and so on.”
Example 4. Compute (ex2)′′.

Solution. By Example 3, (ex2)′′ is the dx dx-coefficient of dd ex2 . We compute:

dd ex2 = dd (ex[x|x2])
= (dd ex)[x|x2] (Abstract Chain Rule)
= (ex dx dx + ex ddx)[x|x2] (Example 2)

= ex2
d(x2) d(x2) + ex2

dd(x2) (Substituting)

= ex2 (2x dx)2 + ex2 (2 dx dx + 2x ddx) (Example 1)

= (4x2 + 2)ex2
dx dx + 2xex2

ddx.

The answer is the above dx dx-coefficient:

(ex2)′′ = (4x2 + 2)ex2
.

Our Abstract Chain Rule works for multivariable and higher-order derivatives, too.
Example 5. The iterated total derivative

d3 sin xy = d3(sin x [x|xy]) = (d3 sin x)[x|xy]

encodes:

• ∂3 sin xy/∂x3 as its dx dx dx-coefficient.

• ∂3 sin xy/∂y3 as its dy dy dy-coefficient.

• ∂3 sin xy
∂x∂y∂y = ∂3 sin xy

∂y∂x∂y = ∂3 sin xy
∂y∂y∂x times 3 as its dx dy dy = dy dx dy = dy dy dx-coefficient (the fact

that there are three ways to write this coefficient is why we write “times 3”).

In Sections 5–7 we will formalize and prove the Abstract Chain Rule. But first, we will connect
these higher-order differentials to a more concrete higher-order chain rule known as Faà di Bruno’s
formula, and also show how the same ideas lead to a finite calculus chain rule.
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3 Faà di Bruno’s Formula

Faà di Bruno’s formula, named after the 19th century Italian priest Francesco Faà di Bruno, is
a formula for the higher derivatives of f(g(x)). See [8] and [3] for the history of Faà di Bruno’s
formula (see also [10] for related work in category theory, of all places, by another ACMS presenter).
The formula can be stated combinatorially:

f(g(x))(n) =
∑

π∈Πn

f (|π|)(g(x))
∏

B∈π

g(|B|)(x)

where π ranges over the set Πn of all partitions of {1, . . . , n} (so for each such partition π, B ranges
over the blocks in π).

The ideas of Section 2 offer an intuitive way to understand the above formula1. For any partition
π = {B1, . . . , Bk} of {1, . . . , n}, let I(π) be the expression

I(π) = f (k)(x) d|B1|x d|B2|x · · · d|Bk|x

involving iterated differentials as in Section 2. By an inductive argument, it is easy to see that

dnf(x) =
∑

π∈Πn

I(π)

(for the inductive step, consider the different ways of obtaining a partition π′ ∈ Πn+1 from a
partition π ∈ Πn: one can either add {n+1} as a new block, which corresponds to changing f (k)(x)
to f (k+1)(x)dx when using the product rule to calculate dI(π); or one can add n + 1 to existing
block Bi of π, which corresponds to changing d|Bi|x to d|Bi|+1x when using the product rule to
calculate dI(π)).

By similar reasoning as in Examples 3 and 4, f(g(x))(n) is the (dx)n-coefficient of dnf(g(x)) =
dn(f(x)[x|g(x)]) = (dnf(x))[x|g(x)]. Thus f(g(x))(n) is the (dx)n-coefficient of∑

π∈Πn

I(π)[x|g(x)] =
∑

π∈Πn

f (|π|)(g(x))
∏

B∈π

d|B|g(x).

It is easy to see that d|B|g(x) = g(|B|)(x)d|B|x + o where o is a sum of terms involving higher-order
differentials (which can be ignored because they contribute nothing to the (dx)n-coefficient we
seek). Faà di Bruno’s formula follows.

4 Application to Finite Calculus

The ideas in this paper also lead to a chain rule for the so-called finite calculus. The finite calculus
is described in Section 2.6 of Graham, Knuth and Patashnik’s Concrete Mathematics [4]. In finite
calculus, one defines an operator ∆ on functions by ∆f(x) = f(x + 1) − f(x). This operator has
many surprising analogies with differentiation, but Graham et al claim: “there’s no corresponding

1Shortly after presenting this argument at ACMS, we realized that the argument can actually be applied directly,
without using iterated differentials at all, yielding a shockingly short elementary proof of Faà di Bruno’s formula.
Examining the literature, we found that the basic idea is already known [9] [6], but both published proofs which
we found are actually proofs of more complicated multivariable generalizations of Faà di Bruno’s formula. For the
single-variable special case, the idea (essentially the same idea which we presented using iterated differentials at
ACMS) is so simple that it can be written with a single sentence [2].
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chain rule of finite calculus, because there’s no nice form for ∆f(g(x)).” To the contrary, since
∆x = (x + 1) − x = 1, an equivalent way to write ∆f(x) is

∆f(x) = f(x + ∆x) − f(x).

One can then easily check that

∆f(g(x)) = f(g(x + ∆x)) − f(g(x)) = f(g(x) + ∆g(x)) − f(g(x)),

which can be expressed as a chain rule

∆(f(x)Jx|g(x)K) = (∆f(x))Jx|g(x)K,

where Jx|g(x)K operates by replacing x by g(x) and ∆x by ∆g(x).

Of course, to make this rigorous, it would be necessary to work in a formal language so as to
carefully track which “1”s are “∆x”s. For example, if f(x) = 1/(1 + x2), we want f(x)Jx|g(x)K to
be 1/(1 + g(x)2), not ∆g(x)/(∆g(x) + g(x)2), even though ∆x = 1. We will not go through the
necessary formalism in this paper, but it would be very similar to the formalism required for the d
operator, which we devote the whole rest of the paper to.

5 Formalizing Terms

In this section, we will formalize the terms (or expressions) of differential calculus. We attempt
to make this formalization self-contained. The machinery we develop here is very similar to the
machinery used to define terms in first-order logic, except that we assume more structure on the
set of variables than is assumed in first-order logic.

Note that one could strongly argue that elementary calculus already implicitly operates on terms,
abusing language to call terms “functions”. For example, x 7→ x2 and y 7→ y2 are two names for the
exact same function. Yet, nevertheless, in elementary calculus, the expressions x2 and y2 are not
interchangeable [5]. Evidently, such discrepancies point to the fact that elementary calculus really
is done using formal terms, implicitly. In the following, we make it explicit.
Definition 1. (Variables) We fix a set of variables defined inductively as follows.

1. For the base step, we fix a countably infinite set {x0, x1, . . .} of distinct elements called
precalculus variables, and we declare them to be variables.

2. Inductively, for every variable v, we fix a new variable dv, which we call a differential variable;
we do this in such a way as to satisfy the following requirement (we write dnv for ddd · · · dv
where d occurs n times):

• (Unique Readability) For all n, m ∈ N, for all variables v and w, if dnv is the same
variable as dmw, then n = m and v = w.

We write V for the set of variables.

Examples of variables include x1, x50, dx0, ddx3, d4x50 (shorthand for ddddx50), and so on. The
unique readability property guarantees that, e.g., dx1 is not the same variable as dx2 or ddx3 or
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dddx1, etc. We allow n or m to be 0 in the unique readability requirement, so, e.g., x1 and dx1
are not the same variable (since d0x1 denotes x1). Every variable is either a precalculus variable
(in which case it is xn for some n ∈ N) or a differential variable (in which case it is dmxn for some
n, m ∈ N with m > 0).
Definition 2. (Constant symbols and function symbols)

1. We fix a distinct set {r}r∈R of constant symbols for the real numbers. For any r ∈ R, r is the
constant symbol for r.

2. For every n ∈ N with n > 0, we fix a distinct set {f}f of n-ary function symbols, where f
ranges over the set of all functions from Rn to R. For any such f , f is the n-ary function
symbol for f .

We make these choices in such a way that no variable is a constant symbol, no variable is an n-ary
function symbol (for any n), and no constant symbol is an n-ary function symbol (for any n).

For example, the exponential function exp gives rise to a 1-ary (or unary) function symbol exp.
The addition function + gives rise to a 2-ary (or binary) function symbol +.
Definition 3. (Terms) We define the terms of differential calculus (or simply terms) inductively as
follows.

1. Every variable v is a term.

2. Every constant symbol is a term.

3. For all n ∈ N (n > 0), for every f : Rn → R, for all terms U1, . . . , Un, f(U1, . . . , Un) is a term.

Examples of terms include 5, π, x1, dx2, sin(x1), +(x0, x1), and so on. We often abuse notation
and suppress the overlines and possibly parentheses when writing terms. For example, we might
write sin x0 instead of sin(x0), cos π instead of cos(π), and so on. For certain well-known functions,
we sometimes abuse notation further, for example, writing:

• x0 + x1 instead of +(x0, x1);

• 2x0 instead of ·(2, x0);

• x0 dx1 instead of ·(x0, dx1);

• x2
0 instead of x 7→ x2(x0);

• ex1 instead of exp(x1);

• x0 dx1 + x1 dx0 instead of +(·(x0, dx1), ·(x1, dx0));

• and so on.

This should cause no confusion in practice.
Definition 4. (Term interpretation)
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• By an assignment, we mean a function s : V → R (recall that V is the set of variables).

• Let s be an assignment. For every term T , we define the interpretation T s ∈ R of T (according
to s) by induction on term complexity as follows.

1. If T is a constant symbol r, then T s = r.
2. If T is a variable v, then T s = s(v).
3. If T is f(U1, . . . , Un) for some f : Rn → R and terms U1, . . . , Un, then T s = f(U s

1 , . . . , U s
n).

For example, if s(x0) = 5, then exp(x0)s = e5. If s(x0) = 9 and s(dx0) = 0.1, then (x dx)s =
9 · 0.1 = 0.9.
Definition 5. (Free variables) We define the free variables FV(T ) of a term T as follows.

1. If T is a constant symbol, then FV(T ) = ∅ (the empty set).

2. If T is a variable v, then FV(T ) = {v}.

3. If T is f(U1, . . . , Un) for some f : Rn → R and terms U1, . . . , Un, then

FV(T ) = FV(U1) ∪ · · · ∪ FV(Un).

For example, FV(5) = ∅, FV(x6) = {x6}, FV(dx2) = {dx2} (note that x2 is not a free variable of
dx2), FV(ex0+x1) = {x0, x1}, FV(x1 dx2) = {x1, dx2}.
Lemma 1. Suppose T is a term, v is a variable, and s is an assignment. If v ̸∈ FV(T ), then T s does
not depend on s(v).

Proof. By induction.

Definition 6. (Semantic equivalence) If T and U are terms, we declare T ≡ U (and say that T and
U are semantically equivalent) if for every assignment s, T s = U s.

For example, sin(x0 + 2π) ≡ sin x0, by which we mean sin(+(x0, 2π))) ≡ sin(x0).

6 Formal Derivatives

Definition 7. (Ordered free variables) If T is a term, we define the ordered free variables OFV(T )
to be the finite sequence whose elements are the free variables FV(T ) of T (each appearing exactly
one time in the sequence), ordered such that:

• Whenever 0 < n < m then dnxi precedes dmxj .

• Whenever 0 < i < j then dnxi precedes dnxj .

For example,

OFV(ex1+x3+x2+x2+x99 dx1 d3x1 dx2 d50x0) = (x1, x2, x3, x99, dx1, dx2, d3x1, d50x0).
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Definition 8. If s is an assignment, w is a variable, and r ∈ R, we write s(w|r) for the assignment
defined by

s(w|r)(v) =
{

r if v is w

s(v) otherwise.

In other words, s(w|r) is the assignment which is identical to s except that it overrides s’s output
on w, mapping w to r instead.
Lemma 2. For any assignment s and variable v, s(v|s(v)) = s.

Proof. Trivial.

Definition 9. (Everywhere-differentiability) Let T be a term, w a variable. We say that T is
everywhere-differentiable with respect to w if for every assignment s, the limit

lim
h→0

T s(w|s(w)+h) − T s

h

converges to a finite real number.
Lemma 3. Let T be a term with OFV(T ) = (v1, . . . , vn) ̸= ∅, and let w be a variable. Assume T is
everywhere-differentiable with respect to w. For all r1, . . . , rn, let

f(r1, . . . , rn) = lim
h→0

T s(w|s(w)+h) − T s

h

where s is some assignment such that each s(vi) = ri. Then f : Rn → R is well-defined.

Proof. In other words, for any r1, . . . , rn ∈ R, f(r1, . . . , rn) does not depend on the choice of s,
as long as each s(vi) = ri. This follows from Lemma 1 since T has no free variables other than
v1, . . . , vn.

Definition 10. If T is a term with OFV(T ) = (v1, . . . , vn), w is a variable, and T is everywhere-
differentiable with respect to w, then we define the derivative of T with respect to w, a term, written
∂T
∂w , as

∂T

∂w
= f(v1, . . . , vn)

where f is as in Lemma 3. We define ∂T
∂w to be the term 0 if FV(T ) = ∅.

Example 6. (Some example term derivatives)

1. ∂x0/∂x0 ≡ 1.

2. ∂x0/∂x1 ≡ 0.

3. ∂x0/∂dx0 ≡ 0.

4. ∂(ex1x2 dx1)/∂x1 ≡ x2ex1x2 dx1.
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Proof. (1) The function f of Lemma 3 is

f(r) = lim
h→0

x
s(x0|s(x0)+h)
0 − xs

0
h

(for any assignment s with s(x0) = r). By Definitions 4 and 8 this simplifies to f(r) = limh→0
s(x0)+h−s(x0)

h =
1. The claim follows.

(2) The function f of Lemma 3 is

f(r) = lim
h→0

x
s(x1|s(x1)+h)
0 − xs

0
h

(whenever s(x0) = r). This simplifies to f(r) = limh→0
s(x0)−s(x0)

h = 0. The claim follows.

(3) Similar to (2).

(4) By Definition 7, OFV(ex1x2 dx1) = (x1, x2, dx1). So, letting v1 = x1, v2 = x2, v3 = dx1, the
function f of Definition 3 is

f(r1, r2, r3) = lim
h→0

(ex1x2 dx1)s(v1|s(v1)+h) − (ex1x2 dx1)s

h

(where each s(vi) = ri). By Definitions 4 and 8 this simplifies to

f(r1, r2, r3) = lim
h→0

e(r1+h)r2r3 − er1r2r3
h

,

which is r2er1r2r3 by calculus. The claim follows.

Another way to prove Example 6 would be to use the following lemma.
Lemma 4. For each term T , variable w, and assignment t, if T is everywhere-differentiable with
respect to w, then (

∂T

∂w

)t

= lim
h→0

T t(w|t(w)+h) − T t

h
.

Proof. If FV(T ) = ∅, the lemma is trivial. Assume not. Let (v1, . . . , vn) = OFV(T ). By definition,
∂T
∂w = f(v1, . . . , vn), where f : Rn → R is such that for all r1, . . . , rn ∈ R, for any assignment s with
each s(vi) = ri,

f(r1, . . . , rn) = lim
h→0

T s(w|s(w)+h) − T s

h
.

In particular, let each ri = t(vi). Then:(
∂T
∂w

)t
= f(v1, . . . , vn)t (Definition 10)

= f(t(v1), . . . , t(vn)) (Definition 4)
= f(r1, . . . , rn) (Choice of r1, . . . , rn)

= lim
h→0

T t(w|t(w)+h) − T t

h
, (Since each t(vi) = ri)

as desired.
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Definition 11. (Term total differentials) Suppose T is a term. We say T is everywhere totally
differentiable if T is everywhere-differentiable with respect to every variable. If so, we define the
total differential dT , a term, as follows. If FV(T ) = ∅ then we define dT = 0. Otherwise, let
OFV(T ) = (v1, . . . , vn) and define

dT = ∂T

∂v1
dv1 + · · · + ∂T

∂vn
dvn.

Furthermore, we inductively define d1T to be dT and, whenever dnT is defined and is everywhere
totally differentiable, we define dn+1T = ddnT .

For example,

d(x1 dx2) = ∂(x1 dx2)
∂x1

dx1 + ∂(x1 dx2)
∂dx2

ddx2

≡ dx1 dx2 + x1 ddx2.

Lemma 5. If term T is everywhere totally differentiable and if v1, . . . , vn are distinct variables such
that FV(T ) ⊆ {v1, . . . , vn}, then

dT ≡ ∂T

∂v1
dv1 + · · · + ∂T

∂vn
dvn.

Proof. Follows from the commutativity of addition and the fact that clearly ∂T
∂vi

≡ 0 if vi ̸∈ FV(T ).

In order to prove an abstract chain rule in Section 7, we will need a form of the classical multivariable
chain rule, expressed for formal terms. For this purpose, we first introduce shorthand for finite
summation notation2.
Definition 12. If m > 0 is an integer and T1, . . . , Tm are terms, we write

∑m
i=1 Ti (or just

∑
i Ti if

no confusion results) as shorthand for T1 + · · · + Tm.
Lemma 6. (Classic Multivariable Chain Rule for Terms) Suppose f : Rn → R. Suppose T⃗ =
(T1, . . . , Tn) are terms with each FV(Ti) ⊆ {v1, . . . , vm} (where v1, . . . , vm are distinct). Assume
that f(T⃗ ) and T1, . . . , Tn are everywhere totally differentiable. Then for all 1 ≤ i ≤ m,

∂(f(T⃗ ))
∂vi

≡
n∑

j=1
fj(T⃗ )∂Tj

∂vi
,

where fj = Djf (the partial derivative of f (in the usual sense) with respect to its jth argument).

Proof. Let s be an assignment and fix 1 ≤ i ≤ m. We must show (Definition 6) that(
∂(f(T⃗ ))

∂vi

)s

=

 n∑
j=1

fj(T⃗ )∂Tj

∂vi

s

.

2It is also possible to incorporate summation notation formally into Definition 3, but the details are complicated.
See [1].

ACMS Journal and Proceedings Page 10 23rd Biennial Conference



Define functions F, Gj : R → R (1 ≤ j ≤ n) by

F (z) = f(T⃗ )s(vi|z),

Gj(z) = T
s(vi|z)
j .

For all 1 ≤ j ≤ n and z ∈ R,

F (z) = f(T⃗ )s(vi|z) (Definition of Fi)

= f(T s(vi|z)
1 , . . . , T s(vi|z)

n ) (Definition 4)
= f(G1(z), . . . , Gn(z)), (Definition of Gj)

so (∗) F ′(z) =
∑

jfj(G1(z), . . . , Gn(z))G′
j(z) (Classic multivar. chain rule)

(the hypotheses of the classic multivariable chain rule are implied by the everywhere-total-differentiability
of f(T⃗ ) and each Ti, by Lemma 4). So armed, we compute:(

∂(f(T⃗ ))
∂vi

)s

= lim
h→0

f(T⃗ )s(vi|s(vi)+h) − f(T⃗ )s

h
(Lemma 4)

= lim
h→0

F (s(vi) + h) − F (s(vi))
h

(Def. of F )

= F ′(s(vi)) (Def. of F ′)
=
∑

jfj(G1(s(vi)), . . . , Gn(s(vi)))G′
j(s(vi)) (By (∗))

=
∑

jfj(T s(vi|s(vi))
1 , . . . , T s(vi|s(vi))

n )G′
j(s(vi)) (Def. of Gj)

=
∑

jfj(T s
1 , . . . , T s

n)G′
j(s(vi)) (Lemma 2)

=
∑

jfj(T s
1 , . . . , T s

n) lim
h→0

Gj(s(vi) + h) − Gj(s(vi))
h

(Def. of G′
j)

=
∑

jfj(T s
1 , . . . , T s

n) lim
h→0

T s(vi|s(vi)+h) − T s(vi|s(vi))

h
(Def. of Gj)

=
∑

jfj(T s
1 , . . . , T s

n) lim
h→0

T s(vi|s(vi)+h) − T s

h
(Lemma 2)

=
∑

jfj(T s
1 , . . . , T s

n)
(

∂Tj

∂vi

)s
(Lemma 4)

=
(∑n

j=1fj(T⃗ )∂Tj

∂vi

)s
, (Def. 4)

as desired.

7 An Abstract Chain Rule

Recall that V denotes the set of all variables. Let T denote the set of all terms.
Definition 13. For any ϕ0 : V → T , the extension of ϕ0 to all terms is the function ϕ : T → T
defined by induction as follows:

1. If T is a constant symbol then ϕ(T ) = T .

2. If T is a variable then ϕ(T ) = ϕ0(T ).

3. If T is f(S1, . . . , Sn) then ϕ(T ) = f(ϕ(S1), . . . , ϕ(Sn)).
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Lemma 7. Let ϕ0 : V → T and let ϕ be the extension of ϕ0 to all terms. Then:

1. (The Substitution Lemma) For any assignment s, if ϕ(s) is the assignment defined by ϕ(s)(v) =
ϕ(v)s, then for every term T , ϕ(T )s = T ϕ(s).

2. For all terms T and U , if T ≡ U then ϕ(T ) ≡ ϕ(U).

Proof. (1) By induction on T . If T is a constant symbol or variable, the claim is trivial. Otherwise,
T is f(U1, . . . , Un). Then

ϕ(T )s = f(ϕ(U1), . . . , ϕ(Un))s (Definition 13)
= f(ϕ(U1)s, . . . , ϕ(Un)s) (Definition 4)

= f(Uϕ(s)
1 , . . . , Uϕ(s)

n ) (Induction)
= T ϕ(s). (Definition 4)

(2) Assume T ≡ U . For any assignment s, if ϕ(s) is as in (1), then T ϕ(s) = Uϕ(s) by Definition 6.
Thus ϕ(T )s = ϕ(U)s by (1). By arbitrariness of s, ϕ(T ) ≡ ϕ(U).

Definition 14. Say ϕ0 : V → T respects d if for each variable v, ϕ0(dv) ≡ dϕ0(v).
Definition 15. (Strong differentiability)

1. We define the subterms of a term T by induction as follows. If T is a variable or constant
symbol, then T is its own lone subterm. If T is f(U1, . . . , Un), then the subterms of T are T
itself along with the subterms of each Ui.

2. A term T is strongly differentiable if every subterm of T is everywhere totally differentiable.

Thus, a term is strongly differentiable if it is built up from pieces which are everywhere totally
differentiable. An example of a term which is everywhere totally differentiable but not strongly
differentiable is |x0|2, which is everywhere totally differentiable despite having a subterm |x0| which
is not. Note that the ordinary chain rule for f(g(x))′ fails when f(x) = x2 and g(x) = |x| (these
functions fail the chain rule’s hypotheses): (|x|2)′ = 2x, but |x|′ is undefined at x = 0. We avoid
such traps in the following theorem by requiring strong differentiability.
Theorem 16. (General Abstract Chain Rule) Let ϕ0 : V → T and assume that ϕ0(v) is strongly
differentiable for every variable v. Let ϕ be the extension of ϕ0 to all terms. If T is strongly
differentiable and ϕ0 respects d, then dϕ(T ) ≡ ϕ(dT ).

Proof. By induction on T . If T is a constant symbol, the theorem is trivial. If T is a variable,
the theorem reduces to the statement that ϕ0 respects d, which is one of the hypotheses. It
remains to consider the case when T is f(T⃗ ) where f : Rm → R and T⃗ = T1, . . . , Tm are simpler
terms. Then T1, . . . , Tm are subterms of T , so, since T is strongly differentiable, it follows that
T1, . . . , Tm are strongly differentiable. By induction, each dϕ(Ti) ≡ ϕ(dTi). Let {v1, . . . , vℓ} =
FV(ϕ(T1)) ∪ · · · ∪ FV(ϕ(Tm)). For the rest of the proof, whenever S is a term and v is a variable,
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we will write Sv for ∂S
∂v . Let

−−→
ϕ(T ) denote ϕ(T1), . . . , ϕ(Tm). We calculate:

dϕ(f(T⃗ ))
≡
∑ℓ

i=1ϕ(f(T⃗ ))vidvi (Lemma 5)

=
∑

if(
−−→
ϕ(T ))vidvi (Definition 13)

≡
∑

i

∑m
j=1fj(

−−→
ϕ(T ))ϕ(Tj)vidvi (Lemma 6)

≡
∑

jfj(
−−→
ϕ(T ))

∑
iϕ(Tj)vidvi (Basic algebra)

≡
∑

jfj(
−−→
ϕ(T ))dϕ(Tj) (Lemma 5)

≡
∑

jfj(
−−→
ϕ(T ))ϕ(dTj) (Induction Hypothesis)

= ϕ
(∑

jfj(T⃗ )dTj

)
(Definition 13)

≡ ϕ
(∑

jfj(T⃗ )
∑ℓ

i=1(Tj)vi dvi

)
(Lemma 5)

≡ ϕ
(∑

i

∑
jfj(T⃗ )(Tj)vi dvi

)
(Basic algebra)

≡ ϕ(
∑

if(T⃗ )vidvi) (Lemma 6)
≡ ϕ(df(T⃗ )) (Lemma 5)

(in the last few lines, we use Lemma 7 part 2).

A weakness of the familiar chain rule is that it does not iterate. The following corollary shows that
the abstract chain rule does iterate.
Corollary 17. For all ϕ0, ϕ and T as in Theorem 16, for all k ∈ N (k > 0), if dℓT exists and is
strongly differentiable for all ℓ < k, then

dkϕ(T ) ≡ ϕ(dkT ).

Proof. By repeated applications of Theorem 16.

In Sections 2 and 3 we used a special case of Theorem 16 which we will now formalize. Recall that
a precalculus variable is one that is not of the form dv for any variable v.
Definition 18. (Variable substitution respecting differentials) Let v be a precalculus variable, U a
term such that dkU is strongly differentiable for all k. For every term T , we will define the result of
substituting U for v in T while respecting differentials, written T [v|U ], as follows. First, we define
ϕ0 : V → T so that:

1. ϕ0(v) = U .

2. For every k > 0, ϕ0(dkv) = dkU .

3. For all variables w not of either of the above two forms, ϕ0(w) = w.

We define T [v|U ] to be ϕ(T ) where ϕ is the extension of ϕ0 to all terms (Definition 13).
Corollary 19. (Abstract Chain Rule) Let U, v be as in Definition 18. If term T is strongly differen-
tiable, then

d(T [v|U ]) ≡ (dT )[v|U ].
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Proof. If ϕ0 is as in Definition 18 then it is easy to see that ϕ0 satisfies the hypotheses of Theorem
16. The corollary then immediately follows from Theorem 16.

Corollary 20. (Iterated Abstract Chain Rule) Let v, T, U be as in Corollary 19. For all k > 0, if
dℓT is strongly differentiable for all ℓ < k, then

dk(T [v|U ]) ≡ (dkT )[v|U ].

Proof. By repeated applications of Corollary 19.
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Abstract
We provide an intuitive motivation for the hyperreal numbers via electoral axioms. We do so in
the form of a Socratic dialogue, in which Protagoras suggests replacing big-oh complexity classes
by real numbers, and Socrates asks some troubling questions about what would happen if one
tried to do that. The dialogue is followed by an appendix containing additional commentary
and a more formal proof.

1 Act One: Replacing Big-Oh Notations by Real Numbers
Protagoras: My dear Socrates, don’t you agree mathematicians make everything too complicated?

Socrates: You’re right, Protagoras. How would you reform mathematics?

Protagoras: I’d start by removing big-oh notations; O(n2), O(n log n), O(n!), . . . . These notations
are an eyesore!

Socrates: You’d get rid of big-oh notations, like O(n2) and O(2n)? What would you replace them
with?

Protagoras: The real numbers. Everyone loves R.

Socrates: I agree R is less confusing than big-oh notation. I’m slow, though. I need examples.
What would you replace O(n) with?

Protagoras: It’s not important. Haven’t you noticed that degrees and radians both work just fine
for measuring angles?

Socrates: Yes. But please humor me. I know it’s arbitrary, but exactly which real would you
replace O(n) with?
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Protagoras: I’d replace O(n) with 1.

Socrates: And O(n2)?

Protagoras: I’d replace O(n2) with 2.

Socrates: So instead of saying, “The algorithm has complexity O(n),” you’d say, “The algorithm
has complexity level 1”?

Protagoras: Yes.

Socrates: And instead of, “My algorithm runs in time O(n2),” you’d say, “My algorithm runs in
time complexity 2”?

Protagoras: Precisely!

Socrates: So O(n) becomes 1 and O(n2) becomes 2. I suppose next you’ll say O(n3) becomes 3?

Protagoras: Naturally.

Socrates: And O(nk) becomes k, for every natural number k?

Protagoras: Now you’ve got it!

Socrates: What would you replace O(2n) by?

Protagoras: Let’s make O(2n) be 1000. Any big number would work.

Socrates: So, “Complexity O(2n)” becomes “Complexity level 1000”?

Protagoras: Yes.

Socrates: And, “Complexity O(nk)” becomes “Complexity level k”?

Protagoras: Yes.

Socrates: I feel a lot smarter. See, my slow brain takes O(2n) time to think about anything. But
now I realize O(2n) is polynomial time!

Protagoras: I don’t follow.

Socrates: Isn’t n1000 a polynomial? Aren’t O(2n) and O(n1000) both replaced by 1000?

Protagoras: You trickster! Very well, let’s fix that. Let’s replace

O(1), O(n), O(n2), . . .

by a strictly increasing sequence
r0 < r1 < r2 . . .

of reals in [0, 500). We’re replacing O(2n) with 1000 so we better ensure this sequence doesn’t get
anywhere near 1000.
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Socrates: We have to, if my brain runs slower than polynomial time. So we’ll replace O(1), O(n),
O(n2), . . . by r0 < r1 < r2 < . . . in [0, 500). If the ri converge, can we assume ri → 500?

Protagoras: They must converge, by the Monotone Convergence Theorem. Without loss of gener-
ality, we can assume ri → 500.

Socrates: I suppose r100 must be around 499.99 then.

Protagoras: ri must be at least 499.99 for some i. I see no harm in letting r100 = 499.99.

Socrates: So instead of saying, “My algorithm has complexity level O(n100),” you’d say, “My
algorithm has complexity level 499.99”?

Protagoras: That is what we have decided.

Socrates: Would you object if I proposed that we should next declare that O(n200) should be
replaced by 499.99001?

Protagoras: Yes, I would certainly object!

Socrates: Why?

Protagoras: Because O(n200) is far bigger than O(n100), Socrates. But 499.99001 is hardly any
bigger than 499.99 at all.

Socrates: I see. Well then, what should we replace O(n200) by, if 499.99001 is too close to 499.99,
which is O(n100)?

Protagoras: I see where you’re going with this. No matter which number I choose for O(n200),
whether it be 499.999 or even 499.9999, you’ll say that it’s still barely any larger than 499.99,
which is O(n100). And even if you accept that 499.9999 is big enough compared to 499.99, you’ll
just go right on and ask me what I’d replace O(n500) by, and then I’ll be stuck even worse. Socrates,
I’m starting to think you’re deliberately trying to make me look foolish.

Socrates: I am guilty as charged.

2 Act Two: The Republic

Protagoras: It seems whatever reals I choose, you’ll catch me in one of your infamous traps. How
would you replace big-oh notation, then?

Socrates: I doubt I’m wise enough, Protagoras. But if you like, we can try to reason it out together.
Consider a Republic. . .

Protagoras: You and your Republics!

Socrates: Isn’t a Republic a big group of people making decisions together?

Protagoras: Yes, but I don’t see how that’s relevant.
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Socrates: Isn’t big-oh notation all about comparing growth rates?

Protagoras: Yes, I suppose so. . .

Socrates: Do the numbers have a king ruling them?

Protagoras: Certainly not.

Socrates: Then if the natural numbers lived together in a Republic, how would they decide, given
f, g : N → R, which function grows faster?

Protagoras: They have no king, so they would have to call a vote.

Socrates: Good idea. Let the natural numbers vote whether f outgrows g, or whether g outgrows
f , or whether they grow at the same rate. How does natural number n vote?

Protagoras: Hmmm. . . I suppose that. . .

• If f(n) > g(n) then n votes that f outgrows g.

• If f(n) < g(n) then n votes that g outgrows f .

• If f(n) = g(n) then n votes that they grow at the same rate.

Socrates: So, if f(75) > g(75), then 75 votes that f outgrows g? And if f(30) = g(30), then 30
votes that f and g have equal growth rate?

Protagoras: Yes.

Socrates: Now I see why Democritus called you a math genius.

Protagoras: But how can we define the outcome of infinitely many votes?

Socrates: Call S ⊆ N a winning bloc if S’s votes alone already guarantee electoral victory. What
axioms can you think of for the collection of all winning blocs?

Protagoras: Well, let’s see . . .

• (Properness) You lose if no one votes for you: ∅ is not a winning bloc.

• (Monotonicity) More votes can’t hurt: If S is a winning bloc, then every superset of S is a
winning bloc.

• (Maximality) Someone wins: for any finite partition N = S1 ∪ · · · ∪ Sk, one of the Si must be
a winning bloc.

Socrates: I don’t understand that Maximality axiom. Can you explain it to me?

Protagoras: Well, isn’t the point of an election to determine a winner?

Socrates: Yes.
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Protagoras: Wouldn’t it be a scandal, then, if the votes were collected and then there was no winner
determined by them?

Socrates: Quite so.

Protagoras: So there you have it. If the natural numbers vote between k different candidates, that’s
a partition of N into k different pieces.

Socrates: Ahh I see. Someone must win in that case, ergo, one of those k different pieces is a
winning bloc.

Protagoras: Precisely.

Socrates: If voters decide that f outgrows g, and that g outgrows h, don’t you think they’d better
also decide that f outgrows h?

Protagoras: Hmm. . . I think we could force that by requiring:

• (Closure Under Intersections) If S and T are winning blocs, then so is S ∩ T .

Socrates: And didn’t we also agree that the natural numbers have no king?

Protagoras: Oh, right!

• (Non-Dictatorialness) There is no n ∈ N such that {n} is a winning bloc. (Such an n would
be a dictator.)

Socrates: But I fear we’re getting nowhere. Surely there’s no way to satisfy all these axioms
simultaneously, is there?

Protagoras: You’re thinking of Arrow’s Impossibility Theorem. But Socrates, Arrow’s Theorem
assumes there are finitely many voters; N has infinitely many voters. Arrow’s Theorem isn’t
applicable. Let’s see. . . yes! Using Zorn’s Lemma, I’m quite sure our axioms are consistent!

Socrates: Slow down. Can you state some definitions?

Protagoras: Definition:

• A set U of subsets of N (called winning blocs) is an ultrafilter if it satisfies Properness,
Monotonicity, Maximality, and Closure Under Intersections.

• U is free if it also satisfies Non-Dictatorialness.

Theorem: Free ultrafilters exist.

So when the natural numbers vote, we can decide the outcome. But Socrates, how does this help
us replace big-oh notations?

3 Act Three: The Hyperreals

Socrates: Tell me, why are 1/2 and 2/4 considered the same number?
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Protagoras: Because (1, 2) and (2, 4) are in the same equivalence class modulo a certain equivalence
relation.

Socrates: So the rational numbers are equivalence classes of pairs?

Protagoras: Yes. The whole point of the rationals is to compare proportions (you could even say,
“growth rates,” in some sense) between pairs.

Socrates: Could we adapt the construction of the rationals to get numbers for comparing growth
rates of functions like n3 and 2n?

Protagoras: Oh, I see. Using our “voters”! Okay, fix a free ultrafilter U . . .

• Definition: If f, g : N → R, declare f ∼ g if the naturals vote that f and g have the same
growth rate (as decided by U).

• Lemma: The relation ∼ is an equivalence relation.

• Definition: The ∼ equivalence classes are called hyperreal numbers.

Socrates: Do these “hyperreal numbers” have any structure?

Protagoras: Yes! Let [f ] be f ’s equivalence class.

• Definition: For all f, g : N → R, we define [f ] + [g] = [f + g], [f ][g] = [fg], and [f ] < [g] if
and only if the naturals vote that g outgrows f (using U).

• Theorem: This makes the hyperreals an ordered field extension of R.

Socrates: Which number should replace O(f(n))?

Protagoras: The hyperreal number [f ]. Or an appropriate neighborhood thereof, if we must respect
that O(f(n)) = O(C · f(n)) for any positive real number C.

Socrates: Aren’t you worried I’ll find some f and g such that O(f(n)) is far bigger than O(g(n))
and yet [f ] ≈ [g]?

Protagoras: Not any more, Socrates. I’m protected from your tricks now by a whole Republic of
voters!

4 Conclusion

If we try replacing big-oh complexity classes by real numbers, we paint ourselves into a corner. But
comparing growth rates by letting natural numbers vote leads to ultrafilters and hyperreal numbers
via electoral axioms (this was previously observed in [2]). We can then replace big-oh complexity
classes by (classes of) hyperreal numbers without painting ourselves into a corner.

This suggests the hyperreals could potentially be quite familiar to computer scientists. They’ve
(almost) been using them all along!
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5 Appendix

The electoral axioms used by our fictional Protagoras to define an ultrafilter translate easily into
the usual axioms of an ultrafilter. Those axioms and the additional results cited by Protagoras
can be found in [4]. The idea of using electoral axioms to motivate ultrafilters was suggested in
[2]. It was known since the 1970s that free ultrafilters provide infinite-voter counterexamples to
Arrow’s Impossibility Theorem [5]. Alexander observed in [1] that the real-life Protagoras made
a certain claim (reported by Plato) with non-Archimedean implications similar to those of our
fictional dialogue:

The very day you start [as my student], you will go home a better man, and the same
thing will happen the day after. Every day, day after day, you will get better and
better [6].

In this case, if Protagoras and his student live forever, and if Protagoras’s goodness level does not
change, and if students do not excel their teachers, and if “better” means “significantly better”
(ruling out diminishing returns), then Protagoras’s goodness is implied to exceed all real numbers.

Critics might claim Act 1 of this dialogue is trivial because the set of big-oh complexity classes
has larger cardinality than R. But Socrates’ argument suggests that even the countable subset
{O(n), O(n2), . . .} ∪ {O(2n)} is already non-embeddable in R in some sense.

A more formal proof that the big-oh complexity classes cannot be meaningfully embedded into R
can be accomplished by a diagonalization argument, as follows.

Let O be the set of big-oh complexity classes. Note that each complexity class is an equivalence
class of functions f : N → R; for instance, the complexity class O(n2) contains not only f(n) = n2,
but also g(n) = 14n2 + 3n − 14 and k(n) = 0.0001n2 + log n. Also, there is an order < on the set
of complexity classes.

Suppose there is a correspondence h : O → R that is strictly increasing. Suppose further that h is
unbounded.

Construct a sequence (an) as follows. For n = 1, there exists a complexity class C1 such that
h(C1) ≥ 1. Choose a function f1 ∈ C1. Let a1 = f1(1). For n = 2, there exists a complexity class
C2 such that h(C2) ≥ 2 and C2 > C1. Choose a function f2 ∈ C2 such that f2(n) > f1(n) for all
n. Let a2 = f2(2). Continue in this manner; for each k ≥ 2, there exists a complexity class Ck

such that Ck > Ck−1 and h(Ck) ≥ k. Choose a function fk ∈ Ck such that fk(n) > fk−1(n) for all
n ∈ N. Let ak = fk(k). Call the resulting sequence (an) a complexity diagonal sequence.

Now, consider an algorithm requiring an steps for n inputs. Let C be the complexity class for this
algorithm. Let r = h(C) and let M = ⌈r⌉. Note that for all n ≥ M + 2, an = fn(n) > fM+1(n),
hence our algorithm has complexity level L for some L ≥ CM+1 > C. This is a contradiction.
Hence there can be no such correspondence h.

If h is bounded, modify the argument by letting u = sup {h(C) | C ∈ O} and replacing h(Ck) ≥ k
with h(Ck) ≥ u − 1

k . There is no complexity class C such that h(C) = u (since there is no
largest complexity class), and with r = h(C), let M ∈ N such that 1

M < u − r. Then for all
n ≥ M + 2, an = fn(n) > fM+1(n), hence our algorithm has complexity level higher than CM+1.
Since h(CM+1) ≥ u − 1

M+1 > u − 1
M > r, the complexity level is greater than C, which is a

contradiction. Again, there can be no such correspondence.
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The above construction of (an) only makes use of countably many elements of O, so again, the
argument is not trivialized by the fact that |O| > |R|.

For a different description of an embedding of big-oh complexity classes in the hyperreals, see
Section 5.10 of [3].
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Abstract

Generative Artificial Intelligence systems have recently and publicly become increasingly com-
parable to the capabilities of many humans in some domains, such as text and image generation.
These systems are rapidly being incorporated into human contexts, for example as phone key-
boards and email apps offer us AI-generated suggestions of words and even complete phrases to
enter with a single tap or swipe. But these suggestions don’t just reduce physical effort; they
reduce cognitive effort: we can accept a suggested phrase before even thinking about what to
say. In this article, I first describe how mimicry pervades the design and implementation of
generative AI systems and expound on some of the implications thereof. I then critique how
these systems are designed and implemented in light of our God-given identity, a biblical per-
spective on mimicry, and a reflection on virtue. I finally outline several “swords-to-plowshares”
approaches that re-form generative AI technologies to support human thinking in writing tasks:
structural editing tools, writer-directed questions to support writers without speaking for them,
and visualizations to enable writers to reflect on their work.

1 Introduction

AI systems for generating and suggesting content have become commonplace. Phone keyboards
suggest the words and even phrases we might write next. Search engines suggest queries. Other
systems generate images, music, or code based on prompts.1 Recent systems have reached unprece-
dented levels of quality in their outputs, as Figures 1 (on the following page) and 2 (later in this
paper) illustrate. As this article goes to press, news outlets are reporting “The End of High-School
English”2 in response to the surprising level of quality of text generated by a language model (in
this case, ChatGPT by OpenAI).3

Despite the superficial novelty of the content generated by these systems, generative AI systems
mimic their training data: they recombine elements of the examples they’ve seen, and even that
recombination is according to tropes of how elements are typically combined. That is, mimicry is
deeply woven into the design of interactive AI systems, both in the underlying models (and the
associated mathematics, algorithms, and data) and in the design of people’s interactions with those

1Generative AI can be distinguished from the pervasive recommendations provided on social media sites, video
sharing sites, shopping sites, etc., since those systems recommend existing content that is (typically) created by other
people. These recommendations also have enormous influence on what we buy, who we socialize with, and even what
we believe. But the generative technology I discuss here generates new content, rather than selecting from among
content that other people have already created.

2For the reference, click here. An additional reference is available by clicking here.
3https://openai.com/blog/chatgpt/
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models. Recent scholarship has identified ways in which these so-called “stochastic parrots” can be
harmful [1]; in this article I extend that critique to the interactive interfaces built on those systems
and how we use those systems in creating the texts we use to communicate with each other. I argue
that, although mimicry is useful in some cases, we must think deeply about how to both build and
use these systems in ways that align more deeply with our God-given identity as co-creators who
are called to love and serve God and our neighbors with thankfulness, humility, and integrity. In
the following sections, I:

• Summarize how interactive generative AI systems work, in terms of data and computation,

• Draw implications about these systems from a Christian world view, and

• Propose some ideas for repurposing the underlying technology redemptively.

Input: I was supposed to start writing the paper at 5:00 PM. But then I started
playing with this cool new language model for 10 minutes. 10 minutes later,
it’s suddenly 9:30 PM!
Model Output: This joke is about how time flies when you’re having fun.
The person was supposed to start writing a paper at 5:00 PM, but they started
playing with a language model instead. They thought they were only playing
with it for 10 minutes, but it was actually 4.5 hours.

Figure 1: The PaLM language model (a type of generative AI system) explains
a joke, after being given only 2 examples of joke explanations. Example from the
research paper published by Google [2]; see there for more details.

2 How Interactive Generative AI Systems Work

We begin with a systems-level overview of generative AI. The two main takeaways of this section
are: (1) AI systems are mathematical not magical, and (2) a bias towards mimicry is deeply
embedded into the entire life cycle of these systems. Informally, the generative modeling approach
has a “groove” that it is following, the bias that the approach embeds.

We limit our scope here to what is technically called self-supervised learning, meaning that the
system is trained to perform a prediction task that is based only on unlabeled examples. We
will focus here on language modeling using Transformer-based large language models (sometimes
abbreviated LLMs), but most of the comments will also apply to other language tasks and to image
generation tasks using Generative Adversarial Networks (GANs), diffusion models such as DALL-E
and Stable Diffusion, and others. Some models deviate slightly from this recipe by tuning the
models based on human feedback; this sort of tuning, called Reinforcement Learning from Human
Feedback, allows selecting for desirable behaviors among the set of behaviors that the model has
learned.[3]; this was the approach used to make the headline-grabbing ChatGPT.

2.1 Collect Data

Building a generative AI system starts with collecting data. The beginning is typically a very
large collection of text. For example, a model recently described by Google was trained on hundreds
of billions of words drawn from publicly available text, such as web pages, books, Wikipedia articles,
news articles, source code for computer programs, and conversations on social media platforms [2].
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2.2 Train a Model of the Data Distribution

The dataset is then typically used to train a statistical model of the distribution of training data.
That is, the model is a function that can compute a probability for any possible text.4 Intuitively,
a “good” model is one that assigns larger probabilities to texts that are more likely to occur in its
training data. The model’s function has many parameters (e.g., 540 billion, for Google’s PaLM
model [2]) that are used in that computation. For practical reasons, the probability computation is
typically performed sequentially through a text, one token (word, punctuation symbol, or sub-word
unit) at a time, thus computing the probability as a product of conditional probabilities:

P (text) = P (word1)P (word2|word1)P (word3|word1, word2)...

The model can then be trained by an iterative process: give the model a text up until a certain
word, ask it to compute the discrete probability distribution of all possible words that come next,
then modify the parameters of the model so that it assigns a slightly greater probability to the
word that did come next. In other words, the model becomes less surprised by the sequences of
words that occur in its training documents. Formally, the model is trained using stochastic gradient
descent to minimize the average cross-entropy loss across every token (word, subword, punctuation,
etc.) in the training data, one small batch at a time; see [4] for details.

2.3 Fine-Tune a Foundation Model

However, few developers train models from scratch. Instead, they download a large pre-trained
“foundation” model, then fine-tune that model for their specific domain or task, if necessary. Most
pre-trained models are released by large organizations such as Google, Microsoft, or NVIDIA, but
some have been trained by academic and independent research groups.5 Fine-tuning can be done
either by further training the model on new data or by crafting ways that the existing model can
be queried in ways that encourage certain types of behavior (such as “prefix tuning” or “prompt
engineering”).6 For example, the joke explanation of Figure 1 was created by prepending to the
given joke two examples of a joke followed by an explanation, and appending “Explanation:” to the
prompt; this prompt engineering caused the model to generate words that would fit the pattern, i.e.,
an explanation of the preceding joke. Even though joke explanation was not explicitly anticipated in
its data collection or training process, the corpus of text that the model was trained on presumably
had sufficient examples of jokes followed by explanations that the model learned to utilize this
pattern.

2.4 Query the Model Interactively

Interactive interfaces developed on top of these mathematical models tend to align with the task
that the model is trained to do. Since the underlying mathematical models are based on modeling
the distribution of existing examples, the interfaces built on them tend to offer samples from that
distribution. For example, for systems powered by text models trained to predict the next word,
the output presented by the system is typically a plausible continuation of a given text. These
continuations may be presented as individual words (for smartphone keyboards), next phrases (for

4Encoder-only models like BERT work slightly differently; they only need to assign a probability to parts of a
text; they perform a “fill-in-the-blanks” task.

5Examples include https://bigscience.huggingface.co/ and https://www.eleuther.ai/.
6Federated Learning can be used to incorporate private data while limiting the degree to which the learned model

can memorize private data.
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systems like Google’s Smart Compose), or larger units like paragraphs. (Some models are instead
trained as translators or summarizers, sometimes called seq2seq or sequence-to-sequence models;
although it may seem fundamentally different, this setting can almost always be mapped to a
next-word prediction task with a suitable prefix.)

One of the ways that generative systems can support people is as a creative partner, in a setting
known as human-AI co-creativity [5–7]. These systems can support people in various ways. Digital
artists can iteratively explore and refine creative concepts by exploring different prompts and partial
images they give to systems like DALL-E or Stable Diffusion (see example in Figure 2).7 Creative
writers can collaborate with large language models like GPT-3 to explore new ideas, such as names
for characters in a story [8, 9].

Generative systems can also support people through facilitating repetitive or predictable tasks.
For example, systems can generate fluent emails given a rough summary of what to communicate,
generate blog posts about desired topics, or summarize long articles.8

3 Implications of How Generative AIs Work

3.1 Since They’re Based on Data. . .

Since generative AI systems are entirely based on data, the availability of training data powers the
behavior of the system. Thus, the system needs no explicit instructions about any of the specific
tasks it is to perform, in contrast to decades of manual effort spent towards manually engineering
domain-specific features or laboriously encoding expert knowledge.

However, the data also limits the behavior of the system. For example, data, at best, reflects the
world as it is, which implicitly allows systems to stereotype on the basis of categories like race,
gender, or religion. And data is rarely a faithful representation of the world as it is; datasets
include biases of selection, representation, aggregation, and evaluation,9 which lead to biases in
system behavior. For example, language models may associate Islam with terrorism and Black
people with crime.10 When system behavior is dictated by data, system designers have limited
ability to embed in the system any notion of the way the world should be, such as discouraging
such stereotypes.

Since current approaches require enormous datasets, organizations with more data of sufficient
quality can train better models. For example, Google’s sibling DeepMind trained a high-performing
model on 1.7 trillion tokens, including a large collection of “books,” presumably from Google’s large
collection of scans. An open-source dataset called The Pile [10], in contrast, contains a smaller
collection of books, which will necessarily limit the capabilities of systems trained on it.

3.2 Since They’re Trained to Minimize Surprise on that Data. . .

For the mathematically inclined, it should be refreshing and even encouraging to see that the
systems that generate seemingly impressive results are, at their core, college-level calculus (the

7See, for example, the DALL-E Prompt Book, https://dallery.gallery/the-dalle-2-prompt-book/
8Products utilizing these approaches include Flowrite and Jarvis.
9Many systematic overviews are available for the interested reader, for example, the fast.ai Data Ethics online

course
10O’Sullivan, Liz; Dickerson, John P. (August 7, 2020). “Here are a few ways GPT-3 can go wrong”
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chain rule), linear algebra (matrix multiplication), probability (conditioning on discrete events), and
numerical methods (gradient descent) applied to large amounts of data. The functions employed
have complex behavior but are composed of simple primitives; for example, the so-called Self-
Attention module at the core of the popular Transformer model uses little more than matrix
multiplication, element-wise exponentiation, and dividing a vector by the sum of its elements.

The word-by-word (“autoregressive”) nature of language models, which may be key to their success,
aligns with how God made the world: step by step. He could have spoken the world into being in
a single act, but instead he constructed it in methodical sequence, one aspect at a time. Human
co-creators likewise generally construct step by step, refining partial ideas.

Since the model’s performance is measured on averages, the model can perform badly in uncommon
situations without its creators noticing. Thus, parameter settings that cause the model to work
well in common situations may have unintentional adverse effects [11].

3.3 Since Many Systems Leverage Big retrained Models. . .

The availability of large foundation models has presented many new opportunities by allowing
practitioners to obtain good performance without extensive training data, but researchers have
urged caution in using them because any models based on a foundation model inherit its flaws,
which in most cases are poorly understood [12]. The use of foundation models also contributes to
homogenization of AI system behavior, making many different systems all prone to exhibit similar
flaws and biases. It also further disconnects those who use the model from the original authors of
the work (text, images, etc.) that the algorithm was trained on, making it more difficult to practice
thankfulness to the authors of the work.

3.4 Since They Usually Show People Generated Samples. . .

Efficient text entry can be desirable: it takes some of the tedium out of entering text. Predictive
text interfaces are one way of doing this, but contemporary interaction techniques only work for the
most highly predictable text, so it tends to nudge writers towards entering such text. Decoder-based
approaches such as gesture typing [13], auto correction [14] and speech recognition post-editing work
for a much broader range of predictability, but fail abruptly for the least predictable text (such
as names), forcing users to make awkward transitions to different interaction techniques. New
interfaces for text entry are regularly presented at conferences on human-computer interaction, but
creative new interaction techniques are still needed in text entry.

Since interactive systems tend to offer samples from a distribution of existing examples, they tend to
encourage users of those systems to create things that are likewise comparable to existing examples.
The “groove” for the technology becomes a “groove” for the users: it will be easiest to say things
that have been said, to continue in the tracks forged by others.

For example, my own studies of writers found that word and phrase predictions, though typically
presented as simply ways to enter text more easily, can nudge writers to write content that con-
forms to the expectations of the system along aspects of word choice, level of detail, and even
sentiment [15–17].

In many cases it’s good for our creations to be grounded in what has already been created. The
more unusual or unexpected the words of a message are, the more difficult it is for others to under-
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stand. Even God’s communication with humanity has worked this way, using words, analogies, and
even patterns of documents (like covenants) that were culturally familiar to the original audience.
Although Jesus’s words had unique content and authority, he spoke about himself by referring to
the Law and Prophets, a foundation of understanding that many of his listeners shared.

But imitation of past examples can become excessive. Predictive text suggestions can lead us
to communicate platitudes or even seemingly thoughtful statements without thinking: consider
a system suggesting “I hope you have a wonderful weekend” at the end of a message, or “How
adorable!” in response to a friend sharing a baby picture. Our words don’t just communicate
information; they communicate human relationship; acknowledging the Image of the speaking God
in the other. Generative AI systems have become, alongside social media and other developments,
more ways that we are able to mimic the external signs of thoughtfulness and care without having
exhibited those virtues.

When aiming to maximize use, mimicry looks like success (more use of the suggestions). So although
systems like Google’s Smart Compose might have stated aims to increase user satisfaction, some of
the easiest metrics (such as number of suggestions accepted or number of words inserted) could be
maximized by finding how to nudge people into following the system’s lead more.

3.5 Is Mimicry Good?

We have seen that mimicry is woven throughout the design and development of generative AI
systems. How should we evaluate mimicry? A consideration of the Biblical narrative shows that
we are encouraged to practice mimicry, but with discernment.

Imitation is not the primary thrust of the Biblical narrative; more focus is given to accurate
perception of and action toward God and others. Nevertheless, the Biblical narrative presents
humans as mimics from the very beginning. The first one to speak in Genesis is God the creator;
when man the creature finally spoke in Genesis 2, verses 19 (in naming every living creature) and
23 (in delighting in his companion), he echoed the words of God, who had previously given names
to things and called them good.

The Bible authors commend imitation of God and of wise behavior. For example, Proverbs en-
courages imitating the diligence of ants (Proverbs 6:6) and to walk in the paths of wisdom. Paul
frequently gives himself as an example to imitate (e.g., 1 Cor 4:16, 11:1, 1 Thes 1:6, 2 Thes 3:7-12).
Other epistles tell their readers to imitate those who are faithful and righteous (3 John 11, Hebrews
6:12). The ultimate goal of all of these commands is that we imitate God (Eph 5:1, 1 Cor 11:1).

However, imitation must be done with discernment. Even imitating God’s actions might not be
wise, as illustrated by the Egyptian magicians in response to the signs that Moses used to show
God’s authority over the oppression of that country’s leader. They are somehow able to mimic
the staff-to-snake, water-to-blood, and frog signs—but their mimicry only worsened the trouble for
their country (more frogs!); they were not able to reverse the plague. Eventually the magicians
concede that the signs are “the finger of God” (Exodus 8:19). More commonly, the people of Israel
are frequently tempted to imitate the ungodly practices of other people groups, such as those that
inhabited the land of Canaan (e.g., Deut 18:9). We could view the entire Pentateuch as an extended
reflection on what to imitate and what not to imitate, towards the goal of creating a place and
community on Earth that is an image of God’s heavenly dwelling.
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3.6 Since the Systems Hide all the Nuance Behind Push-button Interfaces. . .

Beyond text entry, generative AI models are also very frequently used for inspiring writers. But
they do so in ways that hide and disconnect us from the people whose ideas and effort the system
is leveraging. For example, OpenAI provides a “playground” interface for its customers to interact
with GPT-3. This interface presents the system’s generation as a magic writing demon, including
showing the generation happening one word at a time as if it were a “ghost in the machine”.
But in fact these words are generated using patterns that the model learned from reading many
examples of other people’s work. Issues of copyright have been raised about this system,11 and more
prominently with image generation system such as OpenAI’s DALL-E or Stable Diffusion12 In the
case of image generation, researchers have found that generative image models would even learn to
add watermarks like Shutterstock’s to their generated images; current systems avoid this behavior
but the creators of both academic or industrial image generation systems have not thoroughly
engaged the questions of attribution that arise. Christians might articulate that we want to be able
to practice gratitude towards the people whose work our work is based on. The task of example-
based explanation has seen some study in classification tasks [18, 19], but has not been sufficiently
explored for generative AI systems.

Educators may rightly be concerned about the availability of generative AI systems, especially
for writing both natural language and programming language, as these systems could be used to
generate assignment solutions of reasonable quality that do not reflect the student’s understanding
or effort. For example, language models can generate acceptable and diverse solutions to common
programming exercises that do not trigger suspicion from plagiarism detection tools [20]. Full
discussion of this issue is beyond the scope of this article, but in short, the situation is similar to that
posed by the introduction of graphing calculators and computer algebra systems in mathematics
instruction.

3.7 A Brief Normative Reflection on Generative AI

One line of Christian scholarship about technology is organized around Christian philosopher Her-
man Dooyeweerd’s “modal aspects,” which help avoid reductionism by prompting reflection along
a wide range of aspects that cannot be reduced to each other. For many aspects, Christian scholars
have identified corresponding design norms that reflect implications of a biblical worldview in each
of these aspects [21]. A comprehensive consideration of the design norms applied to generative AI
is beyond the scope of this paper, but I will mention a few observations and questions that we
might raise based on some of these norms.

• cultural norm: What effect will generative models have on textual and visual media (and
so on culture) overall? As generating text becomes cheaper, will the value of text further
decrease? As increasing amounts of the text we read and images we see are generated at least
partially by models that are trained to mimic the status quo, will our collective thinking be
broadened or narrowed? What effects could these systems have on how people with differing
literacy or language proficiency interact with language?

• clarity norm: Language has long been used to mislead, but will large language models increase
the scale or effectiveness of disinformation?13 On the other hand, might better language

11See GPT-3 – Copyright Law and Power - Dr Michael Guihot - YouTube
12See DALL-E works with the images of creators who do not receive anything in return: what copyright says about

AI - Digis Mak and Is DALL-E’s art borrowed or stolen? | Engadget.
13OpenAI recently published a report from a workshop they convened on the topic: https://openai.com/blog/

forecasting-misuse/
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technology give us better tools for finding clarity through summarization, better search, etc.?

• social norm: Text that is kind and contextually appropriate has served as a signal of care and
thoughtfulness in written communication. But if those signals can be generated automatically,
will they lose their meaning? If the people we’re communicating with suspect that our text is
computer-generated (even if it is not), will they trust us less? The nascent field of AI-Mediated
Communication studies (AI-MC) explores these and related questions.

• stewardship norm: With computation and storage demands of models only increasing, will
generative AI technology waste energy? (Historical precedent suggests that power-efficient
implementations will come.) How will we curate quality training data?

• harmony norm (or beauty norm): How will our cultural sensibilities of what is beautiful and
valuable change as it becomes easier to produce artifacts that we once deemed as high-quality?
How can tools work harmoniously with the human process of writing, rather than intruding
on it?

• justice norm: Will the benefits of AI technology be distributed equitably? Will those whose
jobs are transformed or replaced by AI advances be equipped to shift to different work? As
these systems become used in sense-making and decision-making contexts, will they amplify,
perpetuate, or even create biases towards or against some groups of people?

• trust norm: Of what sort of trust can the outputs of large language models be worthy? How
can we assess their reliability?

4 Redeeming Artificial Parrots

Although many applications of generative AI can be positive, the general trend towards better
mimicry leads to concern about the future impacts of these systems. But rather than abandon these
systems, I encourage a “swords into plowshares” (Isaiah 2:3-5) approach, where we re-mold existing
systems to serve new goals. In particular, we can leverage the extensive research and computational
effort that has gone into large pre-trained language models such as GPT-3. Although these models
were initially trained for mimicry and are often used to substitute for human thinking, they can be
repurposed to empower and encourage human thinking. I discuss two potential approaches below
and provide examples from my own research.

Figure 2: Example of creative use of a modern AI system that can generate or refine images
based on textual descriptions. A full description of the artist’s process is given at the source:
https://andys.page/posts/how-to-draw/.
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4.1 Empowering Writers with Structural Editing and Visualization Tools

One approach to redeeming generative models is to use them to power editing and visualization
tools that give creators more powerful tools to understand and reshape their work. These tools
present the opportunity for writers to remold and reshape their work without ceding authorship of
any part of that work to an AI system.

Low-level revision tools, typically for grammatical error correction [22] or contextual spelling cor-
rection, typically suggest edits that can be accepted or rejected, but the edits are typically at a
small scale, which helpfully constrains their potential influence on the content and makes it easy
for writers to critically evaluate the suggestion. Other interfaces allow exploration of alternatives
to single words using a contextual thesaurus [23].

Other tools allow manipulation at a broader level, but at the cost of writers’ control. For example,
a system can generate paraphrases of a writer’s sentence, perhaps to match a desired style [24], but
writers’ control over these paraphrases is typically indirect. Still others provide indirect controls
over the system’s edits [25, 26], but we seek direct control. Systems like OREO [27] can flexibly
reword selected spans of text to better achieve a writer’s goal, although the specification of that
goal is difficult.

In contrast, Dang et al. consider providing summaries of each paragraph in the document mar-
gin [28]. Writers found that these summaries provided a perspective on their writing that helped
them revise. Although the system generates text, it does so in the process of summarizing the
writer’s own work. Compared with approaches that complete partial texts, this approach reduces
the risk of the system hallucinating information or making its own point. Nevertheless, writers still
observed a difference between their own writing and the style of the generated text, and sometimes
adapted the summaries into revisions of their own work. Dong et al. deliberately designed their
interface to avoid implying that the system’s outputs were suggestions to be accepted. That choice
reduces the coercion for a writer to appropriate the system’s words as their own.

The approach of developing AI-powered editing tools has been more common in visual domains
than text. Adobe has recently released Neural Filters for Photoshop that give visual artists a new
palette of brushes and sliders to shape their work, leveraging familiar interaction patterns in a new
way. While the result is clearly artificial, the process utilizes generative AI models in ways that
keep much of the control of the result in the hands of the artist. However, some current work in
image editing does so in ways that leave substantial creative direction to the system rather than the
artist. For example, GANPaint [29] gives artists “brushes” that cause the model to make localized
edits to the brushed area of the image, to hallucinate the presence of some desired attribute (such
as clouds or trees). Although the approach took a major step towards providing more direct control
over the otherwise black-box process of image generation, further work was needed to give artists
more explicit control over how the system enacts the desired edits. As text understanding and
image generation both become more powerful, opportunities emerge to give more precise editing
instructions, for example as demonstrated by InstructPix2Pix [30]. However, the same advances
allow artists to give even higher-level instructions of what edits to make, leaving the system with
has considerable latitude in interpreting the instruction, which may reduce the creative agency of
the artist.

To further explore interaction techniques and technical approaches for structural revision of doc-
uments, several undergraduate students and I built several prototypes for revising structure at
the sentence level. Figure 4 shows a proposed direct manipulation interaction: the writer drags a
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selected phrase to a new location and the system performs the necessary edits on the rest of the
sentence (highlighted in green in the figure). However, in this interaction it is not obvious to the
writer which manipulations are likely to be successful, so we also explored interactions in which
the system presents several plausible reorderings that the writer can choose among and then refine
using further selection operations (Figure 3). We are currently working to extend these ideas to
help writers revise the structure and flow of wider areas of documents.

Figure 3: A selection interaction for clause reordering within a given sentence. The example
(unedited output of a prototype system by Calvin students April Volzer and Noah Madrid) shows
five different possibilities for which phrase opens the sentence. Phrases are given colored back-
grounds to visualize the relationships between the alternatives. Each alternative can be expanded
to show alternative completions of that phrase.

It was earlier demonstrated by researchers that high stress can cause heart attacks.

earlier demonstrated researchers       high stress heart attacks caused

It was earlier demonstrated by researchers that heart attacks can be caused by high stress.select

drag

drop

It was earlier demonstrated by researchers that heart attacks can be caused by high stress.

Figure 4: Mock-up of an example direct manipulation interaction for rearranging a sentence by
dragging and dropping a selected phrase. During dragging, non-content words are dimmed. Drop-
ping the phrase constrains its relative position; green highlights indicate other words that the
language model needed to modify or move.

4.2 Inspiring Writers by Asking Questions

Language models have learned patterns that characterize writing; how can human writers leverage
that knowledge without the model writing for them? One approach my collaborators and I have
explored is having the model generate questions for the writer, rather than text that they might
appropriate themselves.

In one exploratory study, we compared the approach of giving guidance in the form of content
questions (“Questions”) with two alternatives: no guidance, and exemplar sentences (“Snippets”)
from high-quality related documents. We designed a scenario for which writers would need to write
isolated sentences in encyclopedia-style writing with optional guidance from a “bot.” Results of the
study, summarized in Figure 5, suggested that while both types of guidance helped productivity
compared to the baseline, writers found prompts shown as Questions gave them usable ideas more
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often than the same semantic content shown as Snippets. Writers also expressed strong prefer-
ence for Questions over Snippets presentation. More details about the study can be found in our
workshop paper [31].
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Figure 5: Left: Prompts presented as Questions were more often marked as relevant by participants.
Right: Participants chose the Questions prompt as most preferable along all three measures asked.

We have also undertaken formative research (conducted Summer 2022, not yet published) to under-
stand what sort of questions would be helpful to writers at various stages in their writing process
(we contrasted drafting stage vs revision stage) and what sorts of interaction techniques might
be useful to provide questions to writers. Based on a Wizard-of-Oz style study where participants
wrote argumentative essays and other participants wrote questions for them, we identified categories
of questions that could be helpful (typically those we classified as Open-Ended, Elaboration, and
Structure), and found that useful questions were typically grounded in the existing text, without
introducing many external ideas. We found that presenting these questions as word processor com-
ments, like a human reviewer might leave, was perceived as helpful without being overly intrusive.
Preliminary explorations of providing our participants’ writings to language models encouraged us
that we should be able to get language models to generate these sorts of questions.

5 Conclusion

Generative AI systems such as large language models are powerful mimics. Uncritical use of them
risks pressuring humans into appropriating the mimic’s words as our own. But people can choose
to use them wisely, both as end users and as software developers.

As users, some people have chosen to disable predictive text on their phones and computer systems;
others have chosen to leave them enabled but be thoughtful about when to look at and accept
suggestions. When the system suggests a generic pleasantry, a writer could instead choose to write
something more specific.

As developers of AI systems and of interactive applications that utilize them, we can consider how
to mold these systems. Here are a few questions we might ask:

• How can a person’s interaction with this system encourage their creativity and individuality?

• Are there ways to help writers celebrate the thought and effort that they have put into their
work, instead of just trying to reduce thought and effort?
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• What sort of writing is the system encouraging? Does the system make it easier or harder
for that writing to love and serve the reader?

• How can an AI system highlight the contributions of the people whose work became the
system’s training data? Can it help people be thankful to those people? Can it give them
credit?

I have discussed two ways of repurposing generative AI systems towards a vision of empowering
writers. But many other ways of repurposing these systems are also possible. For example, I have
informally started to explore using language models like GPT-3 to help me come up with ideas for
educational materials that are highly contextualized to the needs of my class but also leveraging
the insights of educators who have tried to teach similar materials before. Also, these models are
typically used to attempt to model expert-level understanding of language or code; could they be
repurposed to simulate a student’s developing understanding of a concept or skill, at a sufficiently
high level of detail that an educator could get useful feedback on what their students individually
understand and how they will respond to potential examples?

It is an exciting time to be working in interactive artificial intelligence. I hope that this article
inspires some Christians to work towards shaping this developing technology.

6 Appendix

All text in italics was generated by the model text-davinci-003, accessed via the OpenAI API.

Title: Some tough questions at the intersection of generative AI and Christian faith. Author:
GPT-3

1. How does generative AI challenge traditional Christian understandings of human creativity and
free will?

Generative AI presents a challenge to traditional Christian understandings of human creativity and
free will by introducing a new kind of artificial intelligence that has the ability to create original
content. Generative AI can generate text, images, music, and more, and it can do so without the
need for a human programmer or artist. This raises the question of whether humans can still be
considered the sole creators of their work and whether they have full control over their creative
processes. It also raises questions of whether the use of generative AI can be ethically justified,
particularly with respect to religious beliefs.

2. How does generative AI shape our understanding of our relationship with God?

Generative AI can reshape our understanding of our relationship with God by introducing a new
way of expressing our creativity. While traditional Christian faith has emphasized the importance
of humans as creative agents, generative AI can enable us to create new forms of art and expression
that may be seen as a form of prayer or worship. In addition, generative AI can allow us to explore
our relationship with God in ways that were not possible before. By allowing us to explore the
boundaries of creativity, generative AI can open up new avenues for spiritual reflection and growth.

3. Are there ethical considerations that must be taken into account when using generative AI?

Yes, there are many ethical considerations that must be taken into account when using generative AI.
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These include questions of authorship and ownership, privacy, and the potential misuse of generative
AI for malicious purposes. Additionally, ethical considerations must be taken into account when
considering the impact of generative AI on human creativity, freedom, and the potential for the
proliferation of “fake news” and other forms of misinformation.

4. How might Christians use generative AI to further their faith?

Christians can use generative AI to further their faith in a variety of ways. For example, Christians
can use generative AI to create new forms of art and expression that can be used to explore and
express their spiritual beliefs. Generative AI can also be used to generate new kinds of sermons and
reflections that can be used to explore and deepen faith. Additionally, generative AI can be used to
generate new types of music, poetry, and other forms of expression that can be used to explore and
express faith.

Explain generative AI.

Generative AI is a type of AI technology which attempts to generate new data based on existing
data sets. For example, generative AI could be used to create new images, music, or text based on
existing data sets. Generative AI can be used to create novel and creative outputs, as well as help
in the development of more complex AI systems by providing additional training data.

Translate into pop song lyrics.

Verse 1: Generative AI, a technology so new It can generate data, create something brand new
Create images, music, and text so fine It can help create a complex AI design

Chorus: Generative AI, it’s the way to go It can create something special, you just gotta know
Generative AI, it’s the wave of the future It will help create something brand new, you’ll be sure

Verse 2: Generative AI, it’s the way to go It can help us create something we never thought we
could know Novel and creative, yeah it’s the thing It’ll help us create a whole new kind of thing
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Abstract
When considering how math and faith integrate, Christians and non-Christians alike can easily
view the two concepts as fairly independent of each other. What should mathematics as a
whole look like for a Christian? We can use God’s revelations about His broader purposes to
help us seek out godly purposes for math. As Christians who view building the kingdom of God
as an ultimate concern, we can ask and hope to answer many questions about integrating our
subject and our faith. Math can serve to complement our Christian walks as we obey the Great
Commandment, the Great Commission, and the Great Requirement.

1 Introduction
When considering how math and faith integrate, it’s quite natural to think of the two concepts as
fairly independent of each other. Indeed, the material I teach in my various classes does not change
based on one’s worldview. The statement “4 + 3 = 7” is true for Christians and non-Christians
alike. A Christian’s ability to do Calculus does not rely on incorporating nor ignoring a Christian
worldview to arrive at suitable solutions that agree with those of non-Christian colleagues. So what
should math look like for a Christian? Do we get a free pass to do our work in the same way as
every other mathematician in the world? Are we free to leave our Christian walk at the door when
working in the world of math? If we bring our Christianity with us to our work, does it make a
difference?

While mathematical truths do not appear to influence nor be influenced by a Christian worldview,
that does not mean that math and faith are wholly independent. What are God’s purposes for
mathematics? We would be hard-pressed to find direct statements in the Bible about God’s pur-
poses for math, but He has revealed through scripture His broader purposes. We can seek out
godly purposes for math based on these revelations [3]. Math is a tool that we can use for good
(or not), and it can be used effectively to help us obey what we can call the Great Commandment
(Matthew 22:37), the Great Commission (Matthew 28:18-20), and the Great Requirement (Micah
6:8) [1].

2 The Great Commandment
And He said to him, “You shall love the Lord your God with all your heart, and with all your soul,
and with all your mind.” Matthew 22:37 (NASB 1995 )

We are commanded to love the Lord our God with all our heart, soul, and mind. What does this
look like? How do we as Christian mathematicians follow such a command?
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We all have gifts and talents from God, and we all have the ability to do mathematics. As Francis Su
highlights, we can all embrace the “wonder, power, and responsibility of mathematics by nourishing
our affection for it.” He continues on, likening a society lacking mathematical affection to a city
without concerts, parks, or museums. He makes a well-supported point that math is for human
flourishing, referring to a “wholeness of being and doing, of realizing one’s potential and helping
others do the same, of acting with honor and integrity even in challenging circumstances” [6]. We
were designed as curious beings. When we learn any new mathematical concept, we can play with
it in our minds. To learn more about God and His nature is an act of worship. Anyone with
the capacity to do math has both the privilege and the obligation to do so. As we work with
mathematics, we should do so with joy, gratitude, and confidence in knowing we are fulfilling God’s
purposes for us. Christianity emphasizes God’s character, especially His love and value for His
creation and all aspects of it, including math. When studying math, we as Christians can know we
are studying something that God values [3].

We can know more about God and His nature through the beauty and truth in math. God uses his
creation to reflect aspects of who He is. According to Howell and Bradley, “Mathematical truths
are necessary, unchangeable, and universal. God in His wisdom made use of mathematical ideas
in structuring the world at the beginning of time. Humans can study the great book of nature
to appreciate the order and beauty of God’s handiwork” [3]. Many find beauty in the elegance of
the myriad patterns and simple formulas that occur quite naturally in mathematics at large and
specifically in the study of creation. This beauty inspires feelings of harmony, balance, and awe
while spurring us on to further investigations; it sparks curiosity and a search for more insight–even
to the point of experiencing something that goes beyond a specific object or idea to point to greater
truth, insight, connections, or significance. Why should math be as effective as it is to explain so
many things in the world? Why should there be mathematical results that connect disparate fields
of study? As we investigate instances of deeper beauty and associated mathematical connections, it
is very natural to think we are being pointed to some deeper truth, to some Creator and Sustainer
of all things. As we seek truth in math, motivated by its beauty or inspired otherwise, we learn
more about the nature of God and His truth while also developing important traits. The search
for deep knowledge in math helps us to learn to think for ourselves. We can discern when answers
make sense, not having to rely on blind trust in authority. We hone our skills of thinking rigorously,
handling ideas well, and forming sound arguments. Thinking rigorously helps us to know the limits
of our arguments, avoiding over generalization. Learning the limits of our arguments benefits our
quest for truth to develop intellectual humility–admitting errors in our arguments and realizing
how much more we have yet to learn–and to build confidence in the truth. “The more you explore
the world of mathematics, the more confidence you have in loving the truth” [6]. Virtues that result
from seeking beauty and truth in math are invaluable assets to Christians.

In following the command to love God, we should be wise stewards of all that He has created. We
need to study and understand how various parts within the whole of creation work and interact
with each other. Through our investigations, we inevitably find seemingly countless similarities
and patterns. Su states that “mathematics is the science of patterns and the art of engaging the
meaning of those patterns” [6]. The ability to do mathematics should be viewed as a gift from
God. Through it, we see revelations about God’s nature, such as His subtlety, order, beauty, and
variety. We find intimate connections between math and science, among other fields, that highlight
the coherence of our Creator. As we enrich our mathematical knowledge of how nature behaves, we
can better serve God’s purposes in the world, helping us to fulfill the cultural mandate we have been
entrusted with. Math assists our understanding of reality while a belief in creation and a spiritual
reality puts the study of the natural world in proper context. When we respond to revelations in
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mathematics with awe and joy, revering and thanking God, we are fulfilling a purpose God has for
us–to be co-creators with Him as stewards of the world, helping to build cultures and to care for
this world [3].

As we work with math, we can even find reassurance for our faith. Math is known to have paradoxes
that defy intuition. Additionally, Gödel’s Incompleteness Theorems prove that it is impossible for a
system that can express basic arithmetic to establish a set of foundational statements (axioms) that
is both complete and consistent. Aspects of what appear to be reasonable, tangible, and incredibly
useful axiomatic systems still require faith [2]. If we are unable to fully trust our intuition when
it comes to the whole of math, which is generally viewed as incredibly logical and reasonable, how
much should we be surprised that to finite human minds we are unable to form a picture of God
that is simultaneously complete, consistent, and paradox-free? While this could seem troubling,
it can be very reassuring. In no way should an inability to work out for oneself a fully clear,
consistent, and complete view of God and His ways detract from faith in Him; faith in God is not
irrational. Rationally justified beliefs exist in many areas outside of math and science that cannot
be addressed with mathematical proof or the scientific methods [5]. Paradoxes to the human mind
are not a roadblock to Christian faith. How could Jesus be fully God and fully man? How does an
all-loving God allow evil to exist in the world? How can we resolve Biblical passages that seem to
show support for predestination with other passages that seem to support free will in salvation [3]?
My lack of clear, consistent, and complete answers here are not indicative of a misplaced faith in
God any more than not knowing why electrons can behave like both waves and particles or a lack
of intuition about the Banach-Tarski paradox (which states that a single ball can be decomposed
into a finite number of disjoint sets which can then be reassembled to form two identical copies
of the first ball) indicate misplaced faith in scientific and mathematical results. If mathematics, a
carefully defined and logically precise system, contains paradoxical ideas, we should not be filled
with angst when we encounter paradoxes in our faith [1].

Math is a creative field. Math is not in need of math memorizers, but instead math explorers. As
a math instructor I try to emphasize understanding and asking “what if” over rote memorization
of steps that often lack important and flexible insights. Math memorizers cannot react well in
unfamiliar situations whereas those who have taken opportunities to explore, ask questions, and
play creatively with math can be flexible to adapt to changing conditions. When we, for example,
hone our skills of deriving formulas to work in a variety of situations, we can use this learned
adaptable thinking to write flexible computer programs to handle many types of inputs or to design
products that work for many different people and situations [6]. The freedom we have to explore
in math is a vital aspect of our creativity as humans and fulfills a calling toward stewardship.

What can math do for students, even those who supposedly “just aren’t math people”? Letting
oneself explore the world of math cultivates important virtues–a vital way of showing our love
for God. Exploring math builds confidence in struggle that gets easier to endure over time, thus
building perseverance, similar to building up muscles and practicing skills in anticipation of the
next sports competition. Even if solutions elude us, we can learn important skills and habits as
we struggle and persevere. Exploring math helps strengthen our ability to change perspectives to
solve problems as we analyze from many viewpoints. If we share in the struggle, perseverance, and
delight of working with others, we also build community with an open spirit in which we see others
in a better way [6]. Cultivating these virtues in the world of mathematics allows for easy transfer
to our lives at large. We can be better prepared and perhaps find more success as we respond to
God’s call in our lives if we have practiced our abilities to struggle, persevere, change perspectives,
and build a community with an open spirit.
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3 The Great Commission

And Jesus came up and spoke to them, saying, “All authority has been given to Me in heaven and
on earth. Go, therefore, and make disciples of all the nations, baptizing them in the name of the
Father and the Son and the Holy Spirit, teaching them to follow all that I commanded you: and lo,
I am with you always, to the end of the age.” Matthew 28:18-20 (NASB 1995 )

We are created with the capacity to do mathematics. How do we use this gift in alignment with
God’s will for us?

We as Christians are called to spread the Gospel throughout the nations. That may reasonably
conjure images of traveling to foreign countries as a missionary, though it may easily mean seeking
out missional or volunteer opportunities without going very far. Whether a part of a mission group,
a church, or working more independently, the logistics involved must be managed, often with limited
resources. How do we maximize use of resources while minimizing costs? A variety of areas in math
are concerned with problem solving and decision making. God appreciates any efforts we put forth
to share His love and Gospel with those around us, but how much more valuable are our efforts if
we have the capacity to utilize our mathematical resources to extend our reach? And how much
will it damage our witness should others see our squandering resources and opportunities that could
have been put to good use with just a little effort toward problem solving?

Reaching others for Christ will inevitably involve problem solving. Our training as mathematicians
can facilitate a successful spreading of the Gospel. If we have properly prepared ourselves as math
explorers, we need not become frustrated when we encounter adverse situations. Rather, as a result
of our training, we can demonstrate power over problems by constructing possible strategies for
obtaining solutions. If we have practiced an ability to understand an idea or problem multiple
ways, we have the freedom and power to choose the view that maximizes our efficiency in solving
the problem [6]. While spreading the Gospel, we should aim to be wise stewards of what has been
entrusted to us. How tragic is it to miss out on reaching those we could have reached had we not
been ignorant or wasteful?

Additionally, we as Christian mathematicians are part of a greater community of mathematicians,
many of whom are not Christians. Perhaps we can use our view of rationality and harmony
between our faith and our discipline to more effectively reach those within our discipline, including
our students, who may not be as open to arguments and reasoning from those outside our discipline.
Furthermore, as we work with students, we have the obligation to be good stewards of our time
with them, seeking to glorify God by teaching to the best of our abilities. We have valuable
opportunities to mentor and build relationships with our students. Through these relationships,
we can encourage and strengthen the walks of our Christian students as we also aim to point our
non-Christian students toward a relationship with Christ. While there are no doubt many reasons
God has led us along the paths we have each taken, who knows whether we have come to our
positions for such opportunities as these?

4 The Great Requirement

He has told you, O man, what is good; and what does the Lord require of you but to do justice, to
love kindness, and to walk humbly with your God? Micah 6:8 (NASB 1995 )

What does it look like to do justice, to love kindness and mercy, and to walk humbly with God in
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the realm of mathematics?

I like to show my students examples of misleading graphs and poorly supported conclusions. A
popular book on statistics, How to Lie with Statistics by Darrell Huff, provides a crash course in
analyzing statistical articles, along with many valuable and relevant reminders. While a book like
this is not explicitly a Christian math book, it does remind us of the responsibility good citizens
have when ingesting and disseminating statistical results (and we as Christians should be good
citizens as long as there is no conflict with God’s will). Huff includes a paraphrased quote by H.
G. Wells: “Statistical thinking will one day be as necessary for efficient citizenship as the ability to
read and write.” It’s good to remind ourselves that despite numbers or a graph supporting some
conclusion, we need to be educated enough to be aware of implicit biases, attempts to deceive, and
other ethical concerns regarding statistical results. We especially as Christians have the obligation
to diligently try to keep from being easily deceived, to do our best not to spread misinformation,
and to be careful to only make conclusions that are properly supported. While we live in a world
filled with attention-grabbing headlines that are often meant to get us to react, we need to analyze
to determine what’s really being supported, which may often be in opposition to what is being said.
Avoiding statistical ignorance helps us to ask questions that matter in reaching conclusions. Have we
been provided with sample size? How about standard error? P -value? What pieces of information
are missing or glossed over that are actually important? If we are missing mathematically important
information, we should seek out source material to get the whole story [4]. We often define and
respond to injustice in society based on numerical data in many forms. How can we as Christians
reasonably strive for justice in the world around us if we do not have the complete picture, the
whole story the data tells us?

What does kindness look like in math? As with any area, the mathematical field is made up
of people–people at various stages of engagement with mathematics. And as with any field, we
need to show kindness and hospitality to others, perhaps especially to the newcomers, even if a
newcomer is a student who just has to take one math course to get a general education requirement
over with. These students may not realize it, but they’re at the beginning stages of becoming
math explorers, potentially heading in new, unanticipated directions. It is important to be an
advocate and encourager for everyone in the field, which can be especially important for those
feeling marginalized. In my college math class. Su advises us to “believe that you and every person
in your life can flourish in mathematics” [6].

As mathematicians, we must remain humble. While math has proved to be a powerful tool, helping
us to explain and make predictions about the world, math also has limitations. Seeing creation
through a Christian worldview helps us understand the limits of math. To some, mathematical
knowledge can become an idol, giving a feeling of certainty in something that can be found indepen-
dently of God. In fact, many try to “mathematize” the world, to format all aspects and processes
of the world by mathematical insights, techniques, and formulas while rejecting non-mathematical
aspects of life as unimportant or nonexistent. Math can be found everywhere in our daily lives,
and it can bring an order to our existence and enable us to abstract, model, express, predict, and
control behavior in areas that initially may seem quite unrelated to math. Conversely, however,
math can be used to obscure necessary aspects of situations and to depersonalize processes and
relations, including issues of life and death. We can celebrate the appropriate understanding and
control in our lives we can find with math while being careful to avoid the desire to view every-
thing quantitatively. The process of mathematizing the world can naturally lead to developing an
arrogant worldview that celebrates independence from God and aims to develop predictive mastery
over nature and society through knowledge whose certainty is suggested by mathematics, much like
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a modern-day Tower of Babel. As Christians, however, we can affirm math as a good gift from
God while simultaneously rejecting the idea that math provides dominion over all facets of creation
that exist. We can see a rich variety of aspects within creation that cannot be measured quantita-
tively, and we should welcome other dimensions of reality, those beyond the limits of mathematical
description, as adding to a more complete view of the world. Math has its limits; it does not lay
sole claim to truth in the world. God’s creation has both mathematical and non-mathematical
structure [3].

We were created by God and have been gifted with talents and abilities, which we can use to
show love to others. As we strive to fulfill the Great Requirement, the study of mathematics
can allow us to be more effective in our efforts to bring about peace, wholeness, and harmony in
the world. We, especially as Christians, should be mindful of the mathematics we develop and
its possible applications. Specifically, we are to use our analytical and quantitative skills wisely,
serving others, showing them we see their worth, and caring for all aspects creation. Viewing the
world solely through a mathematized lens reduces life merely down to its quantitative aspects,
ignoring important social and cultural aspects of reality—those that may exhibit themselves in art,
literature, ethics, religion, politics, economics, etc. This can easily be used to sidestep concerns of
personal responsibility, ethics, virtue, and caring. Many vital aspects of life are important because
of personal, societal, or cultural values, not mathematical values, and, therefore, are not effectively
approached through methods that require impersonality, precision, and abstraction. We must be
careful to avoid overvaluing means to an end (like productivity and efficiency) or treating them as
ends unto themselves while devaluing or overlooking proper end goals, such as human dignity and
worth [3]. Mathematics serves an important purpose in the world, but its place is in service and
stewardship, not in impersonally dictating how all aspects of reality should function or be viewed.
Loving our neighbors and emphasizing their worth involves using mathematics to best serve others,
aiming to fulfill their needs with our gifts and talents.

5 Conclusion

In conclusion, much of what we could consider the technical content of math may seem quite
independent from a Christian worldview. However, as Christians who view building the kingdom
of God as an ultimate concern, we must ask ourselves many questions when it comes to integrating
our subject and our faith. Are we using our full talents, abilities, and opportunities to learn about
something God has created and values? Are we attempting to learn more about God and His
creation through our studies in all areas? How are we using our gifts to reach others, to serve
others, and to be wise stewards of creation? What kind of culture are we building and how are we
using math to do that? How is our study of math also building up virtues that are important for
daily life? Are we avoiding the temptation to treat math as an idol to solve all of the world’s ills?
Are there ethical or other value-laden concerns we should be considering as we are developing math
or applying it to solve problems? These and other relevant questions may not be easy to answer,
but they give us important points to consider in how we use math as Christians.
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Abstract

This “Classroom-capsule” article describes an assignment given in my Multivariate Calculus
class. It is based on the following question: Given n randomly sized noodles (in a bowl of soup
and eaten with chopsticks), what is the probability that the first one selected is the longest one?

1 Introduction

Many years ago, our family was eating noodle soup in a Chinese restaurant. We were using
chopsticks to reach into the soup in search of (hidden) noodles. My son, who was taking AP
Calculus at the time, asked, “If the noodles have random lengths and you only have two of them
in your bowl, what is the probability of selecting the longer one?” I had no idea at the time that
this problem and related questions would become an important part of my multivariate calculus
course from that point forward. In this article I share the assignment I give my students.

2 The Assignment

Suppose you are eating noodle soup, trying somewhat unsuccessfully to find and extract noodles
out of the soup using chopsticks. The noodles have random lengths (uniform distribution) between
0 and 1 and there are only two noodles left. Your task is to determine the probability of finding
the longer one first. Assume that the probability of obtaining a given noodle equals the length of
the noodle divided by the sum of the lengths of all (two, in this case) noodles in the bowl.

1. Create a five-by-five grid (25 cells) that partitions the (x, y) points of a unit square. For each
of the 25 cells, determine the probability of finding the longer noodle if the lengths of the two
noodles correspond to the values of x and y at the midpoint of the given cell. Average these
25 values to estimate the probability in question.

2. Set up and evaluate a double integral that will find the exact probability of extracting the
longer of two noodles.

3. What is the average length of the shorter noodle?

4. What is the average length of the longer noodle?

5. What is the average ratio of the length of the short noodle to the length of the long noodle?
(This is different from the ratio of the averages of their lengths!)

6. What is the average of the ratio of the length of the long noodle to the length of the short
noodle?
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7. For a bonus, write a program to answer Questions 2 through 6, using a 20 by 20 grid, with a
random pair of lengths in each cell, as we did in class. This will be much more accurate than
just selecting 400 pairs of random noodle lengths. Compare the results from two methods.

8. As an additional bonus, repeat Question 2 with three noodles, using a triple integral, and
then generalize your approach to n noodles.

3 Discussion of the Solution

I assigned various versions of this problem as projects several times over the years before it reached
its present form. Not surprisingly, most students haven’t known where to begin, because they had
not yet encountered calculus-based probability problems. To help with this, I eventually scaffolded
the problem to include Question 1. In addition, we now discuss the problem at length in class prior
to my assigning it. I usually give them a week to work on it individually, but it would work well
as a group project, too.

To prepare them for Question 1, I created a five by five grid of 25 congruent cells partitioning the
unit square. We went around the classroom with students giving me a “random” (x, y) pair in each
of the 25 cells. Letting x and y denote the noodle lengths associated with a given cell, we then
calculated the probability that the longer noodle would be selected in each case. After doing this
activity, students didn’t have much problem with Question 1 of the assignment, though some of
them took some prompting to realize they should use a probability of 1

2 when x = y = 0.5. Using
the midpoint of each cell for (x, y) rather than random values yields the probability

1
25

( 0.1
0.1 + 0.1 + 0.3

0.3 + 0.1 + 0.5
0.5 + 0.1 + · · · + 0.9

0.7 + 0.9 + 0.9
0.9 + 0.9

)
≈ 0.678.

For Question 2, students could easily express the probability as p(x, y) = x
x+y when x ≥ y and

p(x, y) = y
x+y when y ≥ x. We had a lot of experience in Calculus II in turning Riemann sums into

integrals in a variety of contexts with density functions. We revisited that here, and I explained
that in this problem p(x, y) serves as a density function for the probability calculation. However,
they hadn’t had much practice in integrating piecewise defined functions over a region, so some of
them needed guidance in setting up the integral (see below). Of course, it is also helpful to use
symmetry to simplify the calculations, especially since the first integral is considerably easier than
the second. Without loss of generality, we may assume that the noodle with length x is the longer
noodle. We then integrate over the lower right triangular half of the unit square and double the
result. (Note: This approach is especially useful when generalizing the problem, as we will see later.
However, in hindsight, it takes a high level of mathematical maturity to truly understand the role
of symmetry here. For that reason, I recommend requiring students to set up all probabilities as
the sum of two integrals, and let them discover the symmetry for themselves, if they are able.)

1∫
0

x∫
0

x

x + y
dy dx +

1∫
0

1∫
x

y

x + y
dy dx = 2

1∫
0

(
x ln(x + y)

∣∣∣∣x
0

)
dx = 2

1∫
0

x ln(2) dx = ln 2.

Questions 3 and 4 are straight-forward but are used to set up the surprise that appears in Question
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6. The average lengths of the shorter and longer noodles are

1∫
0

x∫
0

y dy dx +
1∫

0

1∫
x

x dy dx = 1
3 and

1∫
0

x∫
0

x dy dx +
1∫

0

1∫
x

y dy dx = 2
3 ,

respectively. As before, symmetry can be used to rewrite with one integral in each case.

For Question 5, using symmetry, the average ratio of the short and long noodle lengths is 2
1∫

0

x∫
0

y

x
dy dx.

While this is an improper integral, it can be shown to converge to 1
2 .

On the other hand, for Question 6 the average ratio of the long and short noodle lengths is

2
1∫

0

x∫
0

x

y
dy dx, which clearly diverges.

These latter two results initially seemed paradoxical to those who assumed the values should be
reciprocals (using the false belief that the ratio of averages will equal the average of ratios). Those
who pursued Question 7 saw first hand the issues with finding averages when some terms are
unbounded. It is worth reminding all students that unbounded integrands may or may not diverge,
and, consequently, the average value of an unbounded function over a finite interval may or may
not exist.

4 Extension

The problem easily generalizes to n > 2 noodles. The probability of selecting the longest noodle is

Pn = n!
∫

· · ·
∫

R

x1
x1 + x2 + · · · + xn

dxn · · · dx2 dx1,

where R is the region in n-space consisting of all n-tuples satisfying 0 ≤ xn ≤ xn−1 ≤ · · · ≤ x1 ≤ 1.

When n = 3, we have

P3 = 6
1∫

0

x∫
0

y∫
0

x

x + y + z
dz dy dx = 3 ln 3 − 4 ln 2 ≈ 0.523.

The first ten values of Pn are approximately 1, 0.691, 0.523, 0.418, 0.347, 0.297, 0.259, 0.229, 0.206,
and 0.187.

It appears that Pn ≈ 2
n+1 . Indeed, on average, the ordered lengths of n noodles will be in the ratio

1 : 2 : 3 : · · · : n, in which case the probability of obtaining the longest noodle is n
1+2+···+n = 2

n+1 .
Another way to see this is to note that as n increases, the length of the longest noodle tends to
1 and the average length of the other n − 1 noodles tends to 1/2. The desired probability will
therefore approach 1

1+(n−1)/2 = 2
n+1 .
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5 Why I like this Problem

1. It is easily understood, which helps students set up a simulation for an approximation, as in
Question 1.

2. Students get a lot of experience with partitioning intervals and using numerical integration
with single integrals. Questions 1 and 7 of this problem give them an opportunity to revisit
these concepts with a double integral. Most of them do need to be shown that averaging
the 25 probabilities in Question 1 is tantamount to calculating a Riemann sum with the 25
p(x, y)∆x∆y values, using ∆x = ∆y = 0.2.

3. It is a good example of how integration of a piecewise defined function can be simplified by
using symmetry to replace two (or more, if n > 2) integrals with one integral.

4. Questions 5 and 6 yield similar-looking improper integrals, but only one of them converges.

5. Though it may be a stretch to call this problem a real-world application, it does provide an
interesting example of the need for n-dimensional integration.

6. The heuristic methods used to arrive at the asymptotic approximation P (n) ≈ 2
n+1 are based

on the expected value of the nth order statistic of a uniform random variable (see [1]). This
estimate matches the first ten values of P (n) from the integrals quite well and implies that∫

R

x1
x1 + x2 + · · · + xn

dxn · · · dx2 dx1

is asymptotically equal to 2
(n+1)! . For fixed n, the exact value of the integral is an elusive

linear combination of natural logarithms, so it seems like an interesting problem to find an
independent proof of the asymptotic result for the integral.
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Abstract
So often students hinder their mathematical development by distancing themselves from the
subject. By simply trying to “meet the requirements,” students not only lose the benefits
of exploring and struggling and developing logical explanations as mathematicians, but they
also deter their trust in God’s plan and opportunity to serve others. By incorporating rituals
and patterns to develop intentional community in the classroom, opportunities to both foster
faith and to accept a personal mathematical identity are encouraged. This paper shares the
observations made by both students and faculty regarding their development in both faith
and mathematics as a result of efforts made to establish intentional community in non-major
mathematics classrooms. Our goal is to foster virtues that are both mathematical and scriptural
as the community works together.

1 Introduction

Like many Christian institutions, Taylor University emphasizes community. With its catch phrase
“intentional community,” Taylor University references the many traditions and routines of student
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life with less attention on community in the classroom. After reading Francis Su’s book Mathematics
for Human Flourishing [10] as a department, we wondered if community enters the mathematics
classroom too haphazardly. Four of us tried to experiment with specific practices and rituals to
develop community in our classes with greater intentionality.

Su suggests that “mathematics is for human flourishing. Human flourishing refers to a wholeness
– of being and doing, of realizing one’s potential and helping others do the same, of acting with
honor and treating others with dignity, of living with integrity even in challenging circumstances.”
Ingrained in his thoughts are aspects of community . . . “helping others” . . . “treating others with
dignity.” There are several factors which may challenge this communal atmosphere in the class-
room. Chang [2] claims that institutional culture is one of the many factors that influence students
engagement in the sciences. Malcolm [7] posits that the culture of STEM education in colleges
and universities separates the personal and academic identities of students thereby impacting both
their efforts and achievement. Being purposeful about community in the mathematics classroom is
an often unrealized element of the development of effective mathematicians. Some of the essential
attributes of mathematicians—individuals who explore possibilities, struggle with challenges, and
develop logical and meaningful solutions—are developed best in community.

This communal development of mathematical attributes also fosters aspects of faith––encouraging
one another, serving one another, and sharing hope with each other. (James 2:14-26 instructs us
that our faith is demonstrated in actions which are often related to community.) The shift from “I”
to “we” requires intentionality as emphasized throughout the Pauline epistles. So often students
hinder their mathematical development by distancing themselves from the subject and those who
study it. By simply trying to “meet the requirements,” students minimize the benefits of human
flourishing that develop them both mathematically and as a Christian. Can we help students feel
that they belong in the mathematics classroom? Can intentional community lead students to a
new understanding of the benefits of mathematics and a connection with their faith?

Winterer [11] recommends the development of rituals in the classroom to develop community. “We
carefully conceive and employ structures, routines, and rituals we think will positively influence
students’ growth mindset, purpose, and belonging. These structures, routines, and rituals in com-
bination with personal connection and shared responsibility help to create a sense of community
in the course.” Seemingly “small” social-psychological interventions––typically brief exercises that
do not teach academic content but instead target students’ thoughts, feelings, and beliefs in and
about school––have had striking effects on educational achievement [12]. The desire is to foster
connection not only between students and the instructor, but between students themselves. The
idea is that emotional healthiness allows one to focus more on the class material [6]. Students
are often hindered in their learning by being concerned about how other students perceive them.
In mathematics especially, students often feel that they do not meet the perceived stereotype (or
do not desire to meet the perceived stereotype) of what a “good” mathematician is. Providing
an opportunity to dispel the stereotypes by allowing students to get to know each other and the
instructor better opens opportunities where students may feel freer to ask question without feeling
stupid.

A concept that connects with this emphasis on intentional community is “belonging.” While be-
longing has potentially different meanings from feeling that one is academically prepared for the
course to feeling that one is not “left out” of the culture of the classroom, we took belonging to
mean that a student feels seen (recognized for their strengths and contributions [9]) and a part of
the community. Belonging, in this sense, is often very difficult, especially in required foundational
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or remedial classes. A recent study [5] notes that high-impact teaching practices such as caring and
supportive teacher behavior, along with professional competency and communication, improved a
student’s ability to feel he or she belongs within the classroom. Further studies provide additional
details regarding instruction that support belonging. One study concludes that African American
students’ positive perceptions of belonging are influenced by 1) Instructional styles in which stu-
dents are more engaged and active in the life of the class, 2) professors who are open and provide
a safe and comfortable environment for students, and 3) peers who consider their opinions and
viewpoints as important and valuable additions to the class. The results of this study underscore
the need for specific instructional techniques and strategies for increased involvement [1]. As stu-
dents feel that they belong in the class, they develop improved attendance and attention, increased
study time, and additional course enrollment in the discipline [8]. The pursuit of intentional com-
munity with students developing a sense of belonging in the class could be an important goal for
the mathematics classroom.

2 Our Plan

At the 2017 Charleston Southern ACMS conference, Matthew Hawks shared a ritual he had devel-
oped in his classes at the US Naval Academy. He called it the “Daily Question” —- a time at the
beginning of every class where students quickly responded to a simple “ice breaker” type of ques-
tion. His goal was building student trust and interest in his classes. One of our faculty members
incorporated this “Daily Question” into his classes since that time, finding that the response from
students was very positive. In seeking to find additional rituals that might encourage intentional
community, students were asked to share techniques used in their classes that helped them feel
cared for by the professor. One experience that was shared by many of the students was when a
professor prayed for them by name. Using this information, a group of our faculty committed to
using both rituals in at least one of their classes for the Spring 2022 semester. The classes included
Mathematics Fundamentals (a remedial class), Geometry for Elementary Teachers, Calculus I, In-
troductory Statistics, and Advanced Statistics. The faculty used many of the questions shared by
Hawks [4] in the appendix of his article and found other icebreaker questions on line They also
developed a way to randomly select a student to pray for —such as drawing a student name from
a deck of name cards.

Each of the faculty members was asked to share his/her hopes and fears in using the rituals. One
faculty member had not taught the remedial mathematics in a long time. He wrote, “I am afraid
that I will go too fast and not connect with students. [Through using the rituals] I am hoping [the
students] feel comfortable to ask questions and receive help. I am hoping that intentionally having
a ritual to help students feel they belong, they will be comfortable [to ask questions].” The professor
teaching both the introductory and advanced statistics wrote, “[I hope] these rituals will stimulate
camaraderie, interpersonal skills, and peer learning.” One working with future elementary teachers
wrote, “I hope my students will gain a comfort in working with each other and with me. I hope that
this comfort will open them up to taking risks, gaining courage, learning through perseverance, and
accepting their ’inner mathematician’.” By “inner mathematician,” he meant the inner character
in each of the students that enjoyed exploring puzzles, finding solutions, and creating patterns and
strategies. While there were hopes for positive outcomes from the daily rituals, the professors also
expressed concerns. The most repeated concern was the amount of time that would be needed each
day to provide such a ritual. There was also a concern that students would see this as childish or
a waste of time.
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Figure 1: Aspects of class that communicated caring or connection to other students.

3 Results

To get feedback from the students regarding the rituals being used, an anonymous, mid semester
survey was promoted within each of the connected classes. There were only two, open-ended items
requested in the survey: (1) Please share one or two aspects of class that made you feel cared for
or connected to other students. (2) From what you shared in the prior question, in what ways
does this help your learning for this class? Of 195 students enrolled in the classes, 64 voluntarily
responded (approximately a 33% response rate).

Of those that responded to the midterm survey, 61% mentioned the daily question (which was
often called “circle share” since students typically stood in a circle to answer the question), 36% of
the students mentioned group work, while 23% mentioned the focused prayer (Figure 1). Here are
some responses from the students:

I really enjoyed our circle share time as I was reminded of each student’s name, as well
as things they are interested in. Secondly, I really loved that [the professor] took time
out of class each morning to pray for us individually. It really made me feel loved and
cared for. I was able to get to know my partner for class, because there were many
opportunities to work together to problem solve. —Mathematics Fundamentals Student

I love doing the circle share every day! I also love how [the professor] prays for a stu-
dent everyday. I feel very intentionally cared for.—Geometry for Elementary Teachers
Student

I LOVE the circle shares! They always challenge me to think about my answers, and
keep me interested in other people’s responses.—Introductory Statistics Student
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Figure 2: The impact on learning from the intentional community rituals.

Similar to what Hawks [4] found when he started his daily question, 31% of the student responses
shared that they developed a greater sense of trust and comfort within the classroom which had a
positive impact on their learning. Students also mentioned gaining perspective from others (42%),
being more engaged (11%), knowing the professor cared (6%), and that mistakes are okay (5%)
(Figure 2). It is interesting to note that many of these responses correspond with ideas shared in
the research about belonging and intentional community. Here are a few quotes from the students:

I am more engaged throughout the class period and feel more comfortable sharing with
the class or with other individuals. (Advanced Statistics Student)

I have never felt like I can do math before but [the professor] made me feel like I can
do anything with math if I put my mind to [it]. I am so grateful for my new confidence
in mathematics. (Geometry for Elementary Teachers Student)

This helps my learning in the class because I am more open to engage with others.
Whether it be in group projects, quizzes, or questions about the homework, I feel more
confident in approaching my classmates than I normally would. (Calculus 1 Student)

In addition to the mid semester survey, we were able to look at some results from common questions
asked in the end of course evaluations. One interesting contrast was for a faculty member who
tried the intentional community rituals in a remedial math course that could be contrasted with
two other courses where the intentional community rituals were not used. Both questions were on
a five-point scale from Strongly Disagree (1) to Strongly Agree (5). For the item, “The instructor
cultivated a sense of community and belonging through this course (even with pandemic realities),”
the instructor received an average of 4.6 for the intentional community ritual classes and an average
of 3.8 for the classes not using the rituals. The contrast was not as dramatic for the item, “The
instructor communicates his/her care and concern for students,” where the intentional community
ritual classes had an average of 4.4 compared to an average of 4.3 for the classes not using the
rituals. Some comments related to the rituals from the course evaluations:

The circle shares are the best part of my day on MW!! (Geometry for Elementary
Teachers Student)
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[The professor] is a wonderful professor and man. He shows that he cares for each
student in the class by praying for them and assisting them if sees they are struggling.
(Calculus 1 Student)

An amazing professor! It is evident you know what you’re doing, love what you’re doing,
and love us. Circle shares every M, W, F were by far the highlight of my semester.
(Geometry for Elementary Teachers Student)

While the majority of the responses to the intentional community rituals were positive, we noted
some negativity. The professor who used the rituals in both his introductory and advanced classes
noted that the students in the advanced classes seemed to lack enthusiasm and would even delay
when they would arrive to class in order to miss the sharing. Several noted that students demon-
strated little enthusiasm for the routines at the beginning of the semester, but realized the benefits
further along. One calculus student shared the following in the course evaluation: “As wholesome
as they are, I have to question the value of circle shares, at least for this class. It was a great ice
breaker for the first week and maybe it could be reorganized to not be quite as intrusive to valuable
class time, but I am not sure that every day was great especially since it’s a foundational Calculus
course and we need to study as adamantly as possible.”

While we started with intentionally promoting community within the classroom, we recognize the
need for further explorations and extensions. For example, we could try to determine if differences
in student perceptions would be apparent if an instructor taught two sections of the same course,
treating one as a control group with no community rituals and another as a treatment group with the
community rituals. The responses we collected were completely voluntary so we might incentivize
or require participation to obtain more complete data. We wonder if we would see the same type of
responses from non-major courses to upper-level majors who potentially take many classes together.
We could also collect demographic information to explore whether positive responses to intentional
community are associated with gender, major, class time, and other factors. We are also interested
in our community as teachers. How much did the collaboration as a community of teachers influence
the outcomes within the classroom?

4 Conclusions

Research certainly communicates the value of developing community and belonging within the
classroom. While we may hope this community develops on its own, for many of us it requires
intentionality, like a classroom ritual. A clear observation from our experience is that students
are much more aware of our individual interest in them by investing this small amount of time in
each class for something non-content related. Furthermore, a daily ritual provides an opportunity
to explain the purpose of the ritual in the context of learning theory. The survey and anecdotal
data supply compelling motivation to construct a routine similar to a circle share, to encourage
the intentional classroom community and sense of belonging. Of course, our ultimate goal is that
each student grows mathematically and in their faith. There is evidence in the survey results that
students gained vital attributes of mathematicians. Su paints a picture of a flourishing mathemat-
ical community as “People who have joined together in a common mission of exploration and play,
bouncing ideas off each other, valuing one another’s input, getting excited about the directions
their ideas are taking them in, and embodying a wide array of mathematical virtues along the
way” [10]. When students come to know one another better, they are able to join together in the
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mathematical community that Su describes. It is amazing how students develop confidence as they
are able to work with others —- especially when barriers that promote superficial community are
removed.

One unexpected benefit we observe from intentional community was the reaction by students in
the remedial and non-major courses. The development of intentional community in these courses
brings about a higher degree of interaction from the students in the course which often results in a
greater commitment to higher achievement. Meyers [8] shares, “Supportive relationships between
faculty and students are not a potential detriment to instructional rigor, but instead function as a
conduit for students to master difficult material.” Our experiences support his conclusions. While
there are similar benefits in courses designed for those more invested in mathematics, the additional
motivation is not as necessary with those students. Students in mathematics courses related to their
majors are often concerned about the time constraints for reviewing and exploring the material. We
realize the need to be conscientious of this concern and adapt the rituals to continue to communicate
to students the desire for a community within our classroom, while emphasizing efficient use of class
time to explore the material. Utilizing small groups is often helpful for these purposes —- especially
if the small groups require students to meet and work with different members of the class throughout
the course. A mini-circleshare within small groups periodically could promote similar aspects of
community while maintaining focus on review or exploration of material.

One student wrote, “I look forward to circleshares every day! I feel like I am more excited to come
to class each day, and more interested in learning math. I also feel more comfortable asking my
peers for help!” Such excitement, interest, and comfort are attitudes that have far-reaching effects
for students, mathematically and personally. Marshall Gregory [3] in a book about memorable
teachers states, “Education is less about improving the knowledge one owns than about improving
the choices one makes.” When students are choosing to be excited to come to class, to be more
interested in learning, and to be more comfortable to collaborate with others—-they are being
educated in the best sense. It is likely that they will not remember a particular lesson or continue
to use techniques that are not practiced, but they can remember an experience of mathematical
community that contributes to them positively––making them a better mathematician and follower
of Christ.
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Abstract
Many new faculty at faith-based institutions have no prior experience with faith-learning inte-
gration as a professor, or even as a student. Our goal is to provide a practical beginner’s guide
for faith-learning integration in college mathematics courses.

1 Introduction

As faculty at faith-based institutions, we strive to develop a robust faith-learning integration com-
ponent to our mathematics program, which starts in each of our individual classes. At our in-
stitution, Taylor University, graduating senior mathematics majors consistently say that through
reading discussions, special in-class activities, and faculty who display the fruits of the Spirit, the
faith connections made during their time in our department were a valuable, important part of
their education.

If you are a new faculty member, it can often be difficult to know how to begin when it comes to
integrating faith and math in the classroom. Besides the huge job of teaching new classes in a new
place, you may also be overwhelmed by your new institution’s culture and expectations for teach-
ing, scholarship, and service, not to mention your institution’s many acronyms and abbreviations,
parking rules, and the many, many names of colleagues you’re trying to remember. In the midst
of all that, faith-learning integration can easily slip to the bottom of your priority list. We must
remember, however, that a Christian perspective in the classroom is one of the primary reasons
our students choose our institutions, and it should be permeating our classes from the beginning.
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The integration of faith and math can be a nebulous concept to faculty members who did not
attend a Christian college or university. Moreover, in our Ph.D. programs, few of us have seen
faith-learning integration modeled, let alone received any training in how to do it. Discussions
with your colleagues across campus at your current Christian institutions are certainly helpful
(for example, through the institution’s center for teaching and learning), but such discussions are
sometimes too broad or philosophical to be practical, particularly when the discussions involve
faculty from different disciplines.

Integrating faith and math well is a process of continuous improvement, and oftentimes the hardest
part is simply getting started. Our goal is for this article to serve as a practical beginner’s guide for
new faculty which presents some faith-learning integration examples you can start doing with your
students. This is not a robust, thorough framework for faith-learning integration throughout an
entire curriculum. Instead, we will start with some simple pieces of general advice, then describe
a few classroom methods, and finally offer some practical examples of faith-learning integration by
mathematics topic and a list of resources.

2 Some Advice

2.1 Curate, don’t Create

Just like with any other subject, excellent course materials and ideas about faith-learning integration
have already been developed by other people. You don’t need to reinvent the wheel. Instead of
spending vast amounts of time creating new materials and lesson plans from scratch, build on the
work others have done. Of course, we hope that some of the ideas in this very article are useful
to you, but there are lots of other resources too. In particular, the person who taught your classes
before you likely has some faith-learning integration materials or ideas that you can implement.
Talk with your colleagues about what they are doing in their classes and what resources they have
used for faith-learning integration. Conferences such as the ACMS conference are another great
way to gather ideas and learn what others are doing in this area.

2.2 Baby Steps

Be open to starting small and working toward a more systematic approach over time. If you have a
few meaningful faith-learning integration discussions or assignments in a course the first time you
teach it, that’s something you can build on next time. Take the first steps, let the Spirit work in
you, and trust God to inspire the rest as you iterate your course.

2.3 Systematic and Simple

Using a book, a list of articles, or a series of videos can be an easy way to kick off faith-learning
integration, without you needing to come up with the topics and materials yourself. It also will
give you extra motivation to study one of the many books you were probably given in your first
week on the job. At the end of this article, we provide suggestions for written and video resources.
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2.4 It Will Become Yours Naturally

Faith-learning integration looks a little different for each faculty member, and you will grow in
this area as you grow in your teaching. Think about your unique interests and experiences and
how that could be a way to get started. For example, if you enjoy history or philosophy or music,
etc., then you may be able to use those interests to make faith-learning connections. Mark shares
his Bible quizzing experience by giving his students opportunities to think about and memorize
Bible verses related to mathematics. Daniel shares about how as a student he had to learn that his
identity is not in good grades but in Christ and regularly has his students reflect on their identity
in Christ. Derek does an activity with his freshmen about productive failure and how our identity
comes from Christ and not our accomplishments. The activity started when he recognized a need
in his students and connected that to his own struggles in graduate school.

2.5 Be Real with Your Students

If faith-learning integration is new or uncomfortable territory for you, be honest with your students
about that, and communicate that you are excited to grow as a teacher together with them as they
grow as students. A little bit of self-deprecating humor goes a long way. Letting students grow
comfortable in your classroom through more light-hearted situations will generate social capital
with them, paving the way for more serious discussions that come later. Even though some of
your initial attempts at integrating faith and math may fall flat in the classroom, students will
appreciate your efforts, and you’ll improve and grow. Over time, your efforts will have a positive
impact.

2.6 Let the Students do the Integration

Instead of having all the answers, our role is typically to ask the right questions and get the students
to think about, discuss, or write about their ideas. While you have to be nimble as you guide the
discussions and tie different threads together, you don’t have to come ready with all the answers.
Trust your students and let them explore the connections between faith and what you are learning.
As Blaise Pascal said, “We are generally better persuaded by the reasons we discover ourselves than
by those given to us by others.”

2.7 Fruit of the Spirit Matters

Without downplaying the importance of curriculum that intentionally integrates faith and math,
don’t forget that living like Jesus and doing your best to display the fruits of the Spirit in your
everyday interactions with students in the classroom are at least as important, and students notice
when their professors really believe and live out what they’re saying! Students are encouraged when
they see that their teachers have an active faith. They need to know that you care about them,
and they want to see you demonstrating God’s love, peace, joy, and grace in the classroom. Some
of our students’ most memorable instances of faith-learning integration were unplanned moments
when their professors were led by the Spirit and were given the right words to say at the right
times. This may be the most obvious advice, but it is also the most important: Faithfulness in
your own spiritual life will overflow into your classroom, and your students will benefit greatly.
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3 Classroom Integration Methods

3.1 Videos and Small Group Discussions

Show a short video that connects the mathematics content you are studying with an important life
issue. Write a discussion question on the board, and after watching the video, have the students
discuss the question in small groups. Then have various groups share their ideas to begin a larger
class discussion. Video and other resources are listed below.

3.2 Articles, Books, and Reflection Papers

Articles and book chapters can stimulate students’ thinking about faith-learning integration. A
straightforward approach is to have students write a short reflection paper in response to an ar-
ticle and to a few of your own additional discussion questions. For example, Francis Su’s book,
Mathematics for Human Flourishing and his website can be used as a springboard for discussing
and writing about ideas such as math and beauty, math and justice, or math and love. For a more
comprehensive exploration of faith-learning integration, students could be asked to read a book
over the span of all their semesters in the math major. For example, most of the courses in our
department require our students to interact with one or two specific chapters of Math Through
the Eyes of Faith. This of course takes coordination with other department members to ensure
students read different portions of the book in each class.

3.3 Papers and Projects

A variety of assignments can easily include faith-learning integration components. For example,
students could be asked to research and write about a famous mathematician, and you could
instruct them to include the story of this person’s religious life (or lack thereof). Students could
collect data related to stewardship issues or to living well. Another option would be to ask each
student to read a different book or chapter that addresses faith-learning integration topics and then
have them present their findings to the whole class.

3.4 Scripture Verses

A simple way to start a discussion is to pick a Bible verse that relates to the class content and then
have the students discuss the meaning and application of the verse. This can then be incorporated
into group discussions or reflection papers as mentioned above, perhaps weekly. Memorizing rele-
vant verses for extra credit can be a fun motivation to learn verses, and discussing Scripture is a
natural way to encourage a sense of belonging for a community of learners.

3.5 Prayer in Class and Community-Building

While our faith-learning integration should go beyond opening class with prayer or spending time
on community building activities, both of these still help lay a foundation of safety and belonging
that will make faith discussions more natural. Some faculty may find that regular class prayers can
be instructive, and praying for individual students can build trust and connections in the classroom.
It is also beneficial to pray for guidance before advising meetings and for clarity before homework
help sessions.
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3.6 Weekly Faith-Learning Integration Time

Setting aside a few minutes each week can be an effective way to systematically incorporate faith-
learning integration. For example, you could have “faith-learning integration Fridays” or Monday
devotionals to discuss the connections between faith and the mathematical content you are teaching
that week. Doing this regularly helps the students begin to see all the connections and life lessons
in the course and how faith and math apply to various areas of our lives.

4 Practical Examples of Faith-Learning Integration by Topic

4.1 Pre-Calculus

• A natural life application of exponential growth is compound interest and how being wise
stewards of our money should encourage us to try to take advantage of compound inter-
est through saving instead of amassing unnecessary debt. Many biblical Proverbs (such as
Proverbs 22:7) encourage wise handling of money. Exponential growth can also be applied to
growth in the Kingdom of God (Luke 13:19).

• Students often do not realize the extent to which they have accepted facts without under-
standing why they are true. Two common examples are the Pythagorean Theorem and the
Quadratic Formula. Ask students why they believe these statements are true, and in general,
when and why should they trust something without proof (2 Corinthians 5:7). When, why,
and in what do we place our faith?

• When students are first introduced to the idea that there are mathematical concepts proven to
be unknowable (e.g. the quintic formula), or even the simpler concept of an equation with no
solutions, ask them how to connect that to our imprecise understanding of parts of Scripture
and God’s lordship over us. Students enjoy discussing various quotations about how much we
really know (Ecclesiastes 3:11 and Romans 11:33), and the discussion helps develop epistemic
humility.

4.2 Liberal Arts Mathematics Courses

• Beauty in mathematics is a ubiquitous concept that we can highlight in all our courses, but it
comes up repeatedly in liberal arts math courses through explorations of Fibonacci numbers
and math in nature and through geometric concepts like the golden rectangle, platonic solids,
fractals, tessellations, and symmetry. An excellent reason to study mathematics is because it
is lovely (Philippians 4:8).

• When studying numbers, have students plot their lives on a number line to put life into
perspective. Discuss life expectancy or how much time we spend or should spend on different
tasks (Psalm 90:12 and James 4:14). See the “Time you have in Jelly Beans” video below.

• Predetermined chaos and the butterfly effect offer a delightful opportunity to discuss how
a small change at the beginning of something can have a major impact at the end, and
students can share their experiences of when this has happened in their lives. The life lesson
is important in that we should be careful how we live because everything we do may have a
significant impact on our lives or on others’ lives (Ephesians 5:15-16).
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4.3 Calculus

• When studying higher dimensions, introduce students to Flatland. An anthropomorphized
flat square cannot conceptualize a cube or sphere, but that does not mean such three-
dimensional objects do not exist and even interact with Flatland. This can be presented
as a metaphor for our finitude and God’s infinitude. There are many things that are difficult
for our limited minds to understand about God (e.g., the Trinity). Considering Flatland helps
us see the arrogance of thinking that if we do not understand something, then it is not real or
should be rejected. We grow in humility when we realize that while on one hand, we should
always be seeking deeper understanding of God, on the other hand we should not expect to
completely understand everything.

• Since we often try to maximize or minimize quantities in calculus, a helpful thing for students
to think about is what we should try to maximize or minimize in our lives (or not maximize
or not minimize). For example, we should not maximize our gain but leave some for others,
as is taught in Leviticus 23:22.

• In multivariable calculus, the graphs of three-variable functions are not completely visualiz-
able because they exist in four-dimensional space. However, we can gain understanding and
intuition about them by considering the graphs of one- and two-variable functions, which we
can visualize. This is somewhat analogous to how we cannot completely comprehend God, but
he has provided us with simpler pictures of himself to help us (“lower-dimensional” pictures,
if you will). For example, the Bible variously presents the persons of God as a shepherd, a
father, a vine, a hen, a lion, a lamb, a king, a vineyard owner, etc., and each of these simpler
pictures helps us understand something true about our God.

• In Calculus II or III, it is helpful to point out how often we use the Fundamental Theorem
of Calculus without thinking about it or realizing it, certainly without being grateful for it.
Point out that this is often analogous to how we treat the gifts of God in our daily lives: his
sustaining power, his love, grace, and mercy, his presence, and his provision for our earthly
needs on a second-by-second basis, including the very air we breathe. If we’re not careful, we
can take them for granted like we take the Fundamental Theorem of Calculus for granted.

4.4 Geometry

• Exploration of Euclid’s fifth postulate generated new mathematical fields. Whole new ge-
ometries could be created by substituting Euclid’s postulate with alternative axioms, and
this contributed to new discoveries such as the theory of relativity. Even when we think
we have understood all results about mathematics (or about God), there are new surprises
(Ecclesiastes 3:11).

• In a geometry course, students usually learn how different sets of postulates lead to distinct
geometries (Euclidean, spherical, hyperbolic). This can lead to good discussions about how
even outside of a mathematical context, distinct conclusions can arise from different premises.
For example, two worldviews, one of which contains the premise that God exists and one of
which assumes the material world is all that there is will come to different conclusions about
any number of philosophical and ethical questions.

• After establishing that infinitely long regions can have finite area (e.g. the Koch snowflake),
ask students what it means for God to be infinite and how to reconcile the idea of more than
one “type” of infinity (Psalm 147:5).
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• As students begin to appreciate the importance of definitions in mathematics, extend the dis-
cussion to definitions in the theological context. For example, this is a great jumping-off point
for a discussion of Bebbington’s Quadrilateral and the meaning of the term “Evangelical.”

4.5 Probability and Statistics

• Since many probability concepts come from gambling applications, it can be helpful to discuss
how we should respond wisely to gambling both individually and as a community (Proverbs
11:18). It can be interesting to look at the very small probability of winning the lottery and
to think about how gambling can affect people’s lives.

• Students enjoy exploring how probability can be surprising, and how coincidences or un-
likely events have occurred in their lives. Students can consider how God may work through
coincidences (Romans 8:28).

• Misleading statistics are often found in advertisements and political statements (Ephesians
4:25). Students can be asked to find examples from the media that demonstrate misleading
statistics and think about how relying on our own life experience is a poor sampling technique.
You could also discuss the Wesleyan Quadrilateral and why experience is only one piece of
the puzzle.

4.6 (Introduction to) Proof Courses

• The sets of rational and irrational numbers are infinitely close to each other in the sense that
for any rational r and any distance ε, no matter how small, there are infinitely many irrational
numbers within ε units of r (and vice versa). The way that the real line is comprised of these
two sets, intermingled and infinitely close, yet also distinct, can be used as an analogy for
the relationships between the persons of the Trinity. Each person is in the other persons (see
John 14:11) in a similar way to how the rationals and irrationals are found within each other.
You might discuss with your students how analogies for the Trinity are most instructive when
one thinks not only about how an analog sheds light on the real Trinity, but also about the
ways the analogy breaks down.

• In addition to considering how faith helps us understand math, discuss how mathematical
thinking can help us with our faith and understanding of the Bible. When studying proposi-
tional logic, point out that there are over 1500 instances of the word “if” in the Bible (NIV).
Analyze the meaning of some of these verses (including what they do not say).

• There is a lot of room in proof classes for discussions of how we know what is true, and
the nature of truth and reality. A primary purpose of a proof is to convince a reader that
something is true. A primary purpose of evangelism is to persuade others of the truth of the
gospel (John 20:31). How are proof and evangelism similar and different? Have students read
1 Peter 3:15-16 and discuss the importance of not only what we communicate, but also how
to communicate in a godly way.

• When students learn about axiomatic systems, we learn that assumptions that we make
immediately have consequences: they imply that various facts (theorems) that follow from
them are also true whenever our assumptions are true. The Bible encourages to be avoid
hasty judgment (Matthew 7:1-6, Proverbs 25:6-10), and to value understanding over opinions
(Proverbs 18:2). Ask students to reflect on what assumptions they may not realize they bring
to discussions with peers, and what the implications of those assumptions are.
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• When learning about set theory or partial orderings, have students think about how various
theological topics could be categorized into sets of “first-level,” “second-level,” and “third-
level” issues.

4.7 Outside the Content Areas

• Emphasize that “productive failure” is a Biblical principle, using the example of Peter in the
Gospels, Paul’s struggles with sin (Romans 7), and/or the lifelong process of sanctification
(Romans 12:2). Model this in your courses by finding ways to incorporate grace without
sacrificing standards. For example, this might be achieved through mastery assignments like
“mastery proofs” or “gateway exams” for derivatives and integrals, where students are allowed
multiple attempts over a long period. It could also be something as simple as the final exam
replacing the lowest regular exam score if higher, or giving out practice tests. Emphasize that
these are not methods of lowering standards, but ways to foster deeper learning, and that our
spiritual lives reflect this kind of progression. Express an expectation of growth (Galatians
6:9) for your students. See Francis Su’s article on grace and videos on a growth mindset
below.

• Early in any course it can be valuable to discuss the benefits of working in groups (Ecclesiastes
4:12), especially when studying mathematics. Students can reflect on their own positive and
negative experiences of working in groups in the past, what has caused their groups to work
or not work well together, and what they are hoping to learn from collaborating with others
this semester.

• A fruitful reflective assignment is to have students write about the highs and lows of their own
mathematics journeys and the hope they have for a positive semester in this class. Connect
this with our pursuit of spiritual growth in Philippians 3:13-14.

• Soon before or after a difficult exam or when the semester is getting stressful, it can be helpful
to have students read through Ephesians 1, especially focusing on their identity in Christ.
Remind students that their worth and value do not come from their grades or performance,
nor from others’ approval of their academic success. Their core identity is a child of God,
an ambassador for Christ and his kingdom. They are blessed, chosen, holy and blameless in
the Father’s sight, chosen to be for the praise of his glory, included in Christ, sealed with the
Holy Spirit. An A in a math class doesn’t increase God’s love for them, nor does a C (or D
or F) diminish it.

• In any math course, you can introduce students to philosophical problems of the ontology of
mathematical objects (numbers, shapes, functions, etc.). Students can begin to think about
whether such things as numbers are part of God’s creation, part of humanity’s creation (as
are art or literature), both, or neither: perhaps they are a kind of fundamental truth existing
independently from God. Are numbers discovered or invented?

5 Conclusion

For those who are looking for some guidance on getting started with faith-learning integration,
we hope that some of these ideas will be helpful launching points for you. As you grow in your
teaching skills and spiritual wisdom, we pray that your classrooms become places where students
see a vibrant faith uniquely reflected in you and in what you do as a teacher. We also hope
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that these ideas can be used by those who are further into their careers yet still looking for some
fresh ideas. For all of us who teach mathematics from a Christian perspective, let’s work to make
faith-learning integration a central and dynamic part of our teaching. Let’s prayerfully synthesize
ideas and practices from others, make them our own, and take small but fruitful steps to help our
students integrate math and faith, to the glory of God.
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Abstract
Rightly understanding, using, and critiquing statistical inferences that relate to correlation
and causation is at the heart of statistical literacy, reasoning, and thinking. The framework of
Hartman, Hunt, and Childers [4] for misconceptions of cause and correlation is used in this paper
to understand Christian soteriology and its intersection with student’s statistical understanding.
Bible verses are used to encourage deeper reflection and understanding by students during a
statistics course to directly address misconceptions related to cause and effect.

1 Introduction

In 2013, Lindell Ormsbee [7] wrote an insightful piece relating artificial neural networks to the
question of free will. Lindell (2013) provided a middle ground between both Arminian and Calvin-
ist theology by defining and mapping out ideas related to God’s middle knowledge. Lindell [7]
defined this as “God’s knowledge of everything that would happen in response to a particular set of
circumstances” [7, p. 3] and imposed this knowledge upon the act of salvation of men, soteriology.
This paper seeks to continue this discourse as it connects with statistical correlation and causation.
The authors hope that readers will be prepared to lead and discuss a faith-based discussion around
the topic that encourages students to justify themselves through Biblical interpretation.

2 Correlation or Causation?
Each breath we take, we are plagued with the aspects of cause and effect. How will eating this
potato chip result in a waistline increase or will this diet lower my blood pressure? Will walking
an extra 1000 steps each day add more days to my life? How will the music I listen to, videos I
watch, literature I read, or conversations I have influence my mind? We know these things matter,
as the scriptures point us toward this recognition.

Do not be deceived: “Bad company ruins good morals” (1 Corinthians 15:33).
Whoever walks with the wise becomes wise, but the companion of fools will suffer harm
(Proverbs 13:20).
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The deeper question though we should be concerned with is, do these actions cause their effects?

The heart of man plans his way, but the Lord establishes his steps (Proverbs 16:9).
Is it not from the mouth of the Most High that good and bad come (Lamentations
3:38)?

Our current culture is steeped in statistical misconceptions of correlation and causation. Our news-
papers and political leaders press them forward as reasoning for purchasing products, legislative
changes, and opportunities to provide a more just and equitable society. The Clinton Founda-
tion, based on research on statistical significance, encouraged the circumcision of men to reduce
the expansion of AIDs [1], [6]. Research on the use of masks during the COVID-19 pushed many
to mandate the wearing of these for the protection of their citizens. Though research supporting
these policies were strong enough for publication, policy makers and others failed to calculate, use,
or understand effect size measurements, confounding factors, correlational concerns, and increased
risks of type I error rates in large sample sizes. This paper seeks to thoughtfully connect ideas
of correlational misconceptions to Biblical passages related to soteriology in order to help statis-
tics teachers purposefully encourage students to integrate their understanding of soteriology with
statistical inference.

2.1 Types of Correlational Misconceptions and Ways to Address

Liu et al. [2] identified seven misconceptions of students when learning about and developing un-
derstanding of correlation. Of these misconceptions, 20 percent of students within the study had
difficulties separating casual and correlated effects. Hartman, Hunt, and Childers [4] identified
five different causal logic fallacies: reverse cause fallacy, bidirectional cause fallacy, common cause
fallacy, single cause fallacy, and coincidence. The reverse cause fallacy assumed that A caused B
without considering the possibility that B is actually the cause of A. The bidirectional cause fallacy
assumed that A caused B without considering the possibility that there is a reciprocal relationship
between the two where A causes B and B causes A. These misconceptions are easily identified and
can easily be addressed with open questions that encourage students to consider the reversal of
the independent and dependent variables. Students should be encouraged to describe the control-
ling factors of the variables to help deduce which variable should be included as a dependent or
independent variable.

The common cause fallacy is when a student believes that A caused B without considering the
possibility that an external factor C is actually the cause for both A and B [4]. These misconceptions
are strongly tied to research methodology, extraneous variables, and confounding factors. Statistics
educators seeking to address these issues in class may offer open questions that relate to other
factors that relate to the study contextually. They may also use questions that encourage students
to consider the research methodology that lack for control.

The single cause fallacy supposed that A caused B without considering the possibility other factors
may influence B [4]. These misconceptions may be redirected by providing other variables that may
also contribute to the independent variable’s variability. Statistics instructors may also encourage
more in-depth description of residual plots and residuals to understand the lack of exact modeling
and other factors that may contribute to the model. Using multiple variables and understanding
the correlation coefficient can also help in understanding the potential of other factors in modeling
a situation.
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Lastly, the coincidence caused fallacy occurred in students who presumed that A caused B without
considering the possibility that the relationship between A and B is merely coincidental [4]. To
help students understand these potential issues, teachers may point towards issues in the study that
reduce sample size, limit participation in the study, or are related to collection bias. Considering
these issues, a change in study parameters may produce different results that are not correlated.

In addition to the recommendations provided, students should have a clear understanding of what
is required to show causality in statistical research. According to Hill’s [5] criteria for causation, the
minimal conditions needed to establish a causal relationship between two items in epidemiological
research are as follows:

1. A temporal relationship that identifies and describes how cause always precedes effect.

2. A measure and description of associational strength.

3. A relationship of induced increased or decreased amount of the dependent variable and its
change in the independent variable.

4. Replication by other studies.

5. The cause and effect relationship is philosophical or scientifically plausible.

6. Alternate explanations are considered and eliminated.

7. The study is experimental.

8. The variable is specific enough to be seen and shown to relate.

9. The relationship is based on current theory and coherent with current knowledge.

2.2 Correlation and Causation in Soteriology

In philosophy, correlation and causation are described as necessary or sufficient causes. A necessary
cause is a condition that must be present for an event to happen. In the health sciences, this may
mean that a person must have HIV before they have AIDS. In law, a defendant convicted of a crime
must either be proven guilty or plead guilty. A sufficient cause is a condition that, when present,
guarantees the occurrence of an event. A sufficient cause in botany may be the death of a plant
because of the elimination of light. The elimination of light was sufficient to cause the death of the
plant but not necessary. These ideas are important as we move towards understanding the depths
of soteriological correlation or causation.

To help statistics educators grapple and lead discussions that tackle common misconceptions in
statistical correlation and causation misconceptions, different Bible verses and explanations will be
provided that relate to soteriology. The statistical literature provided before are used to situate
and include Bible verses and stories for richer discussion in statistics teachers classrooms. To
understand these concepts fully, it is important to describe different forms of grace. The Society
of Evangelical Arminians describe prevenient grace as that which “prepares and enables sinners to
receive the free gift of salvation offered in Christ and his gospel” [9]. Arminians and those parallel
to those of this doctrinal thinking believe that prevenient grace is granted to all human beings and
allows them to freely accept Christ as their savior. Those opposed to this belief describe grace as
with terms common grace and saving grace. Saving grace is an unmerited favor given to the elect
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chosen in accord with God’s free will. Common grace is the grace of patience and kindness given to
all sinners who deserve immediate and justified condemnation. It is important for teachers during
this discussion to understand and acknowledge that the very large majority of Christians believe
that grace must be given to humans because of the fall of Adam and Even in the garden to be
redeemed by the Lord. In the next sections, each statistical fallacy is presented with a balanced
lens of soteriological perspective to help teachers address potential misconceptions statistically and
in soteriology in their classes.

3 Five Statistical Misconceptions and Verse Associations

Section 3 of this paper provides a connection of statistical and soteriological cause fallacies. Statis-
tics educators focusing on a creating a classroom that fosters statistical reasoning [3] should:

1. Focus on developing central statistical ideas rather than on presenting set of tools and pro-
cedures.

2. Promote classroom discourse that includes statistical arguments and sustained exchanges that
focus on significant statistical ideas.

3. Use assessment to learn what students know and to monitor the development of their statis-
tical learning as well as to evaluate instructional plans and progress.

4. Integrate the use of appropriate technological tools that allow students to test their conjec-
tures, explore and analyze data, and develop their statistical reasoning.

5. Use real and motivating data sets to engage students in making and testing conjectures.

6. Use classroom activities to support the development of students’ reasoning.

Similarly, Christian statistics educators working towards developing a Christian reasoning class-
room should intersect these principles with Christian teaching. Teachers should consider using the
Bible and history as data sets for understanding the Lord and Christian teaching. In this section,
tables are included that connect Bible verses to potential student misconceptions during statistical
inference. Teachers can assign these verses for students to engage with at many different times in
their course. For instance, if an instructor knows that a particular data set often presents students
with bi-directional cause fallacy, they could have these verses written on note cards and complete
a sorting activity. Students could be directed to place once set of verses for men working with God
in one section, the inability of men to work out their salvation in another, and verses describing the
means of grace in another from Table 2. This activity would promote statistical and theological
reasoning. After discussing why students placed certain verses in each section and how these ideas
work together to create truth, they could then be directed to apply this same concept to a recent
problem they investigated. This and similar discussions would help promote discourse that focuses
on Biblical truth and statistical arguments that focus on statistical ideas.

In statistics, the reverse cause fallacy can be seen when a student only considers one variable as a
cause. For example, a student may think that depression leads to smoking. Thus, they may not
consider the idea that smoking may lead to depression. In soteriology, the reverse cause fallacy
would be highlighted by someone who focuses only on the responsibility of man or the free will of
God. An argument that both work together, does not show a reasonable position of cause based on
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Hill’s [5] descriptions and relates to the bi-directional fallacy. Students grappling with this fallacy
must consider the alternative view of their belief and argue for or against it, making sense of the
texts using their own reasoning and sense making. Soteriological proof texts to point students
toward with these potential fallacies are represented in Table 1. Teachers may use these examples
to bring deeper Biblical insight into who actually causes salvation to occur by offering them up for
further discussion.

Only Considering God’s Free Will? Only Considering Man’s Free Will?
John 12:32 And I, when I am lifted up from the
earth, will draw all people to myself.

John 16:8 And when he comes, he will convict
the world concerning sin and righteousness and
judgment

Titus 2:11 For the grace of God has appeared,
bringing salvation for all people,

Consider assigning Ezekiel 33:1-20 for deeper
discussion.

Other related verses related to the salvation of
the world and all may include John 1:9, 29,
3:16-17, 4:42; 2 Corinthians 5:19; 1 John 2:1-
2, 4:14; Romans 5:18; 2 Corinthians 5:14-15; 1
Timothy 2:4-6; Hebrews 2:9; and 2 Peter 3:9.

John 16:8 You did not choose me, but I chose
you and appointed you that you should go and
bear fruit and that your fruit should abide, so
that whatever you ask the Father in my name,
he may give it to you.

John 6:65 And he said, “This is why I told you
that no one can come to me unless it is granted
him by the Father.”

Ephesians 2:8 For by grace you have been saved
through faith. And this is not your own doing;
it is the gift of God,

Consider assigning Romans 9 for deeper discus-
sion.

Other related verses related to God’s salvation
of a particular people may include Matthew
1:21, 20:28, 26:28; John 10:11, 11:50-53; Acts
20:28; Ephesians 5:25-27, Romans 8:32-34; He-
brews 2:17, 3:1, 9:15, 9:28; and Revelation 5:9

Table 1: Reverse Cause

Very similar to the earlier fallacy, is the bi-directional cause fallacy. This fallacy happens when a
student does not consider the potential of a reciprocal relationship between the two variables. A
good example of two variables working in conjunction are predators and prey in an environment.
An increase or decrease in one of the variables will impact the other. This is best represented in
soteriology by means of God and man working together in the determination of salvation. Many
who have an Arminian or parallel soteriology believe that God’s foresight and prevenient grace
are the basis of God’s decision of who will be saved from all eternity (Ephesians 1:4, Romans
8:29-30, Revelation 13:8). This may be notably connected with Ormsbee’s [7] middle knowledge
described at the beginning of this article. As students struggle in the soteriological discussion and
have bidirectional cause fallacies, consider the verses in Table 2 as ways to encourage deeper prayer
and reflection. Encouraging students to consider different perspectives and justifying their beliefs
Biblically and philosophically are very important for their faith.
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Men Working with God in Salvation Inability of Men to Work Salvation
Joshua 24:15 And if it is evil in your eyes to
serve the Lord, choose this day whom you will
serve, whether the gods your fathers served in
the region beyond the River, or the gods of the
Amorites in whose land you dwell. But as for
me and my house, we will serve the Lord.

Deuteronomy 30:19 I call heaven and earth to
witness against you today, that I have set be-
fore you life and death, blessing and curse.
Therefore choose life, that you and your off-
spring may live,

Revelation 3:20 Behold, I stand at the door and
knock. If anyone hears my voice and opens the
door, I will come in to him and eat with him,
and he with me.

1 Corinthians 2:14 The natural person does not
accept the things of the Spirit of God, for they
are folly to him, and he is not able to under-
stand them because they are spiritually dis-
cerned.

Ephesians 2:1, 4-5 And you were dead in the
trespasses and sins. . . But God, being rich in
mercy, because of the great love with which he
loved us, even when we were dead in our tres-
passes, made us alive together with Christ—by
grace you have been saved—

Romans 8:7 because the mind set on the flesh
is hostile toward God; for it does not subject
itself to the law of God, for it is not even able
to do so,

There are very common themes running across this topic because most theologians agree that
grace is required to bring humans in relationship with Himself. Some verses to help students
understand this fact are: Genesis 6:5, Genesis 8:21, Colossians 2:13, Psalm 51:5, Psalm 58:3,
John 3:5-7, Job 14:4, Jeremiah 13:23, Titus 1:15, 1 John 5:19, John 8:34, 2 Chronicles 6:36,
Psalm 130:3, Proverbs 20:9, Ecclesiastes 7:20, Isaiah, 53:6, etc.

Table 2: The Bi-Directional Cause Fallacy

During most soteriological discussions the relationship of evangelism is brought to the forefront.
Arminian theologians and laymen argue that if God has predestined all that should be saved, why
should we preach or do missions? Calvinist theologians and missionaries, like their Christian coun-
terparts, see their evangelism work as obedience to commands from the Lord [10], who ultimately
provides regeneration and establishes his kingdom (Matthew 28:16-20) and this is a prevalent myth
imposed on Calvinist according to Stewart [8]. The discussion appears to be parallel to the common
cause fallacy in which there is another factor contributing to salvation, the preaching of the gospel.
This fallacy happens when someone believes that one thing caused another, without considering
another factor that could have caused both things. For example, someone may have a sore throat
and a runny nose. They think their runny nose caused their sore throat. In reality, the doctor
discovers that they have strep, which caused both the sore throat and the runny nose.

Arminian and Calvinist theologians strongly agree that the gospel must be preached and much
evangelism work has been done by both groups historically. To further extend thinking on these
ideas, instructors may encourage students to read and reflect on the verses in Table 3. Proponents
of both theologies will note that God is the decisive granter of faith and repentance. Though the
bridge that different soteriologies explicate may be seen as short and wide or narrow and long
across the chasm that separates humanity from God, unity can be found here. Most theologians
agree that we are saved by grace alone through the preaching and teaching of God through humans
either orally or by written word.
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Men Preach the Gospel The Lord Instructs
Romans 10:14-17 How then will they call on
him in whom they have not believed? And
how are they to believe in him of whom they
have never heard? And how are they to hear
without someone preaching? And how are
they to preach unless they are sent? As it is
written, “How beautiful are the feet of those
who preach the good news!” But they have
not all obeyed the gospel. For Isaiah says,
“Lord, who has believed what he has heard
from us?” So faith comes from hearing, and
hearing through the word of Christ.

Ezekiel 33:4-6 then if anyone who hears the
sound of the trumpet does not take warning,
and the sword comes and takes him away, his
blood shall be upon his own head. He heard
the sound of the trumpet and did not take
warning; his blood shall be upon himself. But
if he had taken warning, he would have saved
his life. But if the watchman sees the sword
coming and does not blow the trumpet, so
that the people are not warned, and the sword
comes and takes any one of them, that person
is taken away in his iniquity, but his blood I
will require at the watchman’s hand.

Jeremiah 31: 31-34 “The days are coming,”
declares the Lord, “when I will make a new
covenant with the people of Israel. . . “I will
put my law in their minds and write it on
their hearts. I will be their God, and they
will be my people. No longer will they teach
their neighbor, or say to one another, ‘Know
the Lord,...“For I will forgive their wickedness
and will remember their sins no more.”

1 Thessalonians 4-5 For we know, brothers
loved by God, that he has chosen you, because
our gospel came to you not only in word, but
also in power and in the Holy Spirit and with
full conviction. You know what kind of men
we proved to be among you for your sake.

Philippians 1:29 For it has been granted to
you that for the sake of Christ you should not
only believe in him but also suffer for his sake

Table 3: Common Cause Fallacy

Many students of statistics can easily become isolated in believing that a variable can be explained
by only one variable. These students do not consider the possibility that other variables may also
play a part in the causation. For example, someone may believe that the only factor that could
have contributed to a patient having lunch cancer is smoking when in fact it could have been work
conditions, genes, or a number of other factors.

As part of the great commission, Christians are charged to share the gospel to every nation.
Unfortunately, there are numerous nations in which the majority have generally rejected the gospel
or Christianity. Thus, we can easily see that the nationality of a human on earth is strongly
associated with their faith. Are there multiple factors that contribute to salvation from scripture
as they relate to national acceptance? Having students relate these ideas to other factors in an
effort to show causation can be very beneficial. Table 4 is provided as just one example of many
potential factors that students may bring out during class related to this fallacy. This is an excellent
fallacy to help promote unity in the class because all Christians agree that it is the work of the
Triune God of all eternity who brings about redemption and salvation of His people. Looking to
other factors that may relate to the spread of the gospel such as nationality, ethnicity, race, sex,
apologetics, gospel presentations, etc. are only lens to use to see our own failure and success to
fulfil the great commission (Matthew 28:16-20).
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National Softening National Hardening
Ezekiel 36:26 And I will give you a new heart,
and a new spirit I will put within you. And I
will remove the heart of stone from your flesh
and give you a heart of flesh.

Ezekiel 11:19 And I will give them one heart,
and a new spirit I will put within them. I will
remove the heart of stone from their flesh and
give them a heart of flesh,

Jonah 3:4-5, 9-10 Jonah began to go into the
city, going a day’s journey. And he called out,
“Yet forty days, and Nineveh shall be over-
thrown!” And the people of Nineveh believed
God. They called for a fast and put on sack-
cloth, from the greatest of them to the least of
them. . . Who knows? God may turn and re-
lent and turn from his fierce anger, so that we
may not perish.” When God saw what they
did, how they turned from their evil way, God
relented of the disaster that he had said he
would do to them, and he did not do it.

Exodus 10:1 Then the Lord said to Moses,
“Go to Pharaoh, for I have hardened his heart
and the heart of his servants, that I may per-
form these signs of Mine among them,

Deuteronomy 2:30 But Sihon king of Heshbon
was not willing for us to pass through his land;
for the Lord your God hardened his spirit and
made his heart obstinate, in order to deliver
him into your hand, as he is today.

John 12: 39-40 Therefore they were not able
to believe. For again Isaiah said,“He has
blinded their eyes and hardened their heart,
lest they see with their eyes, and understand
with their heart, and turn, and I would heal
them.”

Table 4: Other Factors Contributing to Salvation

The coincidence cause fallacy in statistics comes when inference is made that does not consider
other parts of the statistical process. In statistics, students will may argue that a sample was not
large enough, the sampling process should be broadened, or other factors to from the statistical
methodology need to be considered for making causal inference. Though this fallacy commonly
appears, it should not be confused with students’ misconceptions of inference that relate to random
sampling and assignment.

Unfortunately, many Christians have moved away from a justification of their beliefs through the use
of scripture and have moved towards a type of coincidence. These Christians have found difficulty in
reconciling seeming differences in Bible verses and have become more deist in nature. The authors
of this paper, see differences in Bible verses as not a means towards the eradication of their use but
to bring greater clarity to true meaning. The scientific revolution has encouraged many Christians
to merge scientific thought and perspectives of randomness or chance into their theological beliefs
or doctrine. However, Arminian and Calvinist theologians wholeheartedly agree that our salvation
is anything but chance. The following verses in Table 5 may be used to investigate the plan of
salvation from eternity as a plan A or plan B work of God. The plan A directive of God implying
that the Lord never changes his mind (Hebrews 13:8, Malachi 3:6, Isaiah 40:8, James 1:17, Numbers
23:19) accomplishes all of his purposes (Romans 8:28, Proverbs 19:21, Isaiah 55:11), and directs all
things according to the counsel of his own will (Ephesians 1:11) from the beginning of the world
to the end ensuring justification. A plan B directive shifting towards God’s purposeful use of his
own goodness and freedom of change to interact with the fallen world providing it opportunity for
justification.
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Plan A Directive of God Plan B Directive of God
Ephesians 1:4-5 even as he chose us in him be-
fore the foundation of the world, that we should
be holy and blameless before him. In love he
predestined us for adoption to himself as sons
through Jesus Christ, according to the purpose
of his will,

John 17:4-6 I glorified you on earth, having ac-
complished the work that you gave me to do.
And now, Father, glorify me in your own pres-
ence with the glory that I had with you be-
fore the world existed. “I have manifested your
name to the people whom you gave me out of
the world. Yours they were, and you gave them
to me, and they have kept your word.

1 Corinthians 2:7 But we impart a secret and
hidden wisdom of God, which God decreed be-
fore the ages for our glory.

1 Titus 1:3 Paul, a servant of God and an apos-
tle of Jesus Christ, for the sake of the faith of
God’s elect and their knowledge of the truth,
which accords with godliness, in hope of eter-
nal life, which God, who never lies, promised
before the ages began and at the proper time
manifested in his word through the preaching
with which I have been entrusted by the com-
mand of God our Savior;

Genesis 1: 27, 31 So God created man in his
own image, in the image of God he created him;
male and female he created them. . . And God
saw everything that he had made, and behold,
it was very good. And there was evening and
there was morning, the sixth day.

Jeremiah 26:19 Did Hezekiah king of Judah and
all Judah put him to death? Did he not fear
the Lord and entreat the favor of the Lord, and
the Lord changed His mind about the misfor-
tune which He had pronounced against them?
But we are committing a great evil against our-
selves.”

Amos 7:3 The Lord changed His mind about
this. “It shall not be,” said the Lord.

Table 5: The Coincidence of Salvation

4 Philosophical Arguments

Given the vast scriptures that focus on the sovereignty of God in salvation, our personal belief and
faith, and the persistent calls and assurance of faith, repentance, and submission in the scripture we
must come to a logical conclusion. Does our faith cause salvation or does God cause our salvation
through faith? How much of our rebirth is generated from human willing and how much from the
Holy Spirit? Does God provide prevenient grace initially through baptism (Roman Catholicism)
or to all men (Wesleyan Theology) in order that they may initiate their belief, faith, repentance,
and submission? Does God initiate salvation through regeneration, adoption, rebirth, raising dead
men, and opening blind eyes (Calvinism)?

Though Biblical justification and proof texts are important, it is essential to also understand causal-
ity philosophically or logically. Students need to walk away with an understanding of the necessary
and sufficient soteriological causes. Table 6 provides a few necessary and sufficient statements that
can be used to spark deeper conversations in class. These phrases are followed with scripture ref-
erences that could be used for justification of their statements as necessary or sufficient causes.
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Printing these statements on note cards and allowing students to place into their own categories
can be useful for encouraging deeper thought and reflection.

Necessary Cause Sufficient Cause
The Lord must draw each individual to salva-
tion (John 6:44, Romans 8:29).

Repentance is required for salvation (1 John
1:9, Acts 3:19).

Grace is necessary for the salvation of all people
(Titus 2:11, Romans 2:4).

All who call on the Lord will be saved (Romans
10:13, Acts 2:21).

Believe in the Lord, and you will be saved (Acts
16:31, Romans 10:9).

God grants individuals repentance that leads
to life (1 Timothy 2:25, Acts 5:31, Acts 11:18).

When the Lord calls, his children answer (John
6:37, John 15:16, John 18:9).

Men are unable to come to God by their own
free will (Romans 8:7, John 1:13, 1 Corinthians
2:14).

Table 6: Necessary and Sufficient Causes

5 Conclusion

Though some papers have tried to bring these differences together to make a more united Christian
voice [7], the argument in this paper is to use these differences to gain a deeper understanding of
our own theology and statistics. Differences in these beliefs will likely not be resolved on this side
of heaven, but God intended for us to use scripture to know him more deeply and test truth (Acts
17:11). Moving towards a depth of understanding of differences can actually help shed light on
commonalities because there is one truth. That truth is positioned by this organization through
the Nicene and Apostles Creeds, that men are sinners and in need of a savior. A savior who
descended to men when they were unable to ascend to him.
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Abstract

Accrediting visits have led California Baptist University to ask how each of its programs sys-
tematically integrates faith into their respective disciplines. In the Department of Mathematical
Sciences, we are replacing the word “integration” with “restoration” as we develop a department-
wide model for all of our majors. This philosophical replacement specifies our approach to
integration. Once our approach is defined, we disclose how our Faith Restoration model accom-
plishes faith integration via three areas: teaching, research, and culture of the mathematical
sciences. In teaching, we incorporate what we call “Faith Themes” into all of our courses. These
Faith Themes are meant to restore how we think about our discipline. We then discuss ways
to restore research and the culture of the mathematical sciences. The ultimate goal of this
model is to produce majors that have restored faith in the thought, practice, and interactions
of the mathematical sciences. The philosophy and implementation of Faith Restoration shall be
discussed with specific examples.

1 Introduction

Accrediting visits have led California Baptist University to ask how each of its programs systemat-
ically integrates faith into their respective disciplines. The Department of Mathematical Sciences
is philosophically replacing the word “integration” with “restoration” through a recently proposed
model by the author of this paper. This substitution is philosophical and not a call to eliminate
the word “integration.” Rather, the use of the word “restoration” emphasizes the faith integration
approach of the presently discussed model. This Faith Restoration model aims to renew the world-
view in the minds of both students and faculty alike. This paper will discuss both the philosophy
and implementation of the Faith Restoration model by building on the foundations of prior work
of others for the philosophy, and by providing examples for the implementation.

The present paper will first introduce the concept of Faith Restoration through the analogy of a
personal anecdote of the author. To accomplish this, the paper will employ the usage of first and
third-person points of view throughout the paper. The narration of the anecdote and accompanying
reflective insight is in the first person point of view. The remainder discussion of philosophy and
implementation is in the third person. Said discussion will focus on three core categories of the
Faith Restoration model: teaching, research, and culture.

2 A Personal Story

I vividly remember my first impression upon viewing the Native-American petroglyphs found in
the Barker Dam hike within Joshua Tree National Park. The colors made the petroglyphs stand

ACMS Journal and Proceedings Page 79 23rd Biennial Conference

https://calbaptist.edu/faculty-directory/profileview?id=276
https://www.calbaptist.edu


out from any other petroglyphs I had ever seen. It was moments later, upon reading a nearby sign,
that I discovered that vandalism had added color. The sign reads:

Nearby you will see petroglyphs which have been traced over with paint. This type of
vandalism prevents others from seeing the petroglyphs in their original form.

While this was obviously frustrating, I could not help but wonder how these defaced petroglyphs
and the accompanying sign provided an analogy of how Christian faculty should integrate faith
in the mathematical sciences. Expressly, the strictly secular perspective of our higher education
disciplines traces over their original form, truth, and beauty. Just like the color of the vandalized
petroglyphs, the secular worldview assumptions of the mathematical sciences induce the learner to
assume these are inherent to the mathematical sciences. In the same way that the sign corrected
my erroneous impression caused by the perpetrators of this vandalism, Christian faculty should
facilitate the same correction to their students regarding the mathematical sciences. That is,
Christian faculty should point students to the original faith-based approach of the discipline. This
does not mean faith-based math is different from math as we know it. Instead, it implies that how
we think about mathematics matters in the context of the renewal of the mind of a follower of
Jesus. Indeed, faith should inform how a Christian mathematician thinks about the foundations of
mathematics. It should also inform or expand the purpose with which a believer applies or teaches
mathematics. Faith should also inform the Christian mathematician that all disciplines can be used
as powerful analogies of the Kingdom of God, much like fishers learned to fish people when following
Jesus. Thus, faith informs the believer that mathematical sciences can provide deep insight into the
principles of the Kingdom of God. As Christian mathematicians are sanctified through the renewal
of the mind, they learn to stop compartmentalizing faith from all aspects of life, from the grand
ones to the minutiae. Much like the defaced petroglyphs, secularized assumptions and perspectives
have tarnished the worldview of mathematical sciences beyond recognition of their original form.
Consequently, the role of the Christian professor is to restore carefully the true sacred form of the
mathematical sciences. To clarify once more, the word “form” is a limitation of the analogy with
the petroglyphs. The “original form” is meant to represent how image-bearers in the garden would
have thought about and practiced mathematics.

In this paper, we propose a philosophical foundation for our approach to Faith Integration of
mathematics that can possibly be applied to a variety of other higher education disciplines. We
summarize our approach and model with the term Faith Restoration. In seeking to restore the a
priori faith roots of mathematics, this paper proposes three intentional ways to accomplish effective
restoration: restoration of the teaching of mathematics, restoration of mathematical research, and
restoration of the culture of the mathematical community at large.

3 From Faith Integration to Faith Restoration

Dr. Ted Murcray, director of the Teaching and Learning Center at California Baptist Univer-
sity, voiced his concern regarding a possible misunderstanding that could arise from using the
phrase “faith integration” at the 2020 Institute for Faith, Teaching, and Learning at CBU [6]. The
Merriam-Webster dictionary defines “integrate” as “to form, coordinate, or blend into a functioning
or unified whole” (see [9]). Understandably, this phrase can perpetuate the root of the problem:
the secular lens portrays higher education disciplines as naturally disjoint from faith. The purpose
of “faith integration” is not to force the union of disjoint areas. Instead, the purpose is to illustrate
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faith as an essential, complete, and correct foundation of our discipline. Rightly seen, the secular-
ization of mathematics is the forceful and unnatural separation of faith and mathematics. As David
S. Dockery puts it (see [2]), “we seek to sanctify the secular.” Dockery reminds readers through
Charles Wesley’s hymn that integrating faith is the act of reuniting “the pair so long disjointed.”

Returning to the analogy of the defaced petroglyphs, Christian faculty are thusly aiming to restore
the sacredness of mathematics slowly blemished by secularism. This is similar to our very own
progressive sanctification as disciples of Christ. Loosely speaking, sanctification is the process of
becoming more like Jesus, the image of the invisible God. Before the fall of humanity, humans were
perfect image bearers of God. Ergo, sanctification is the process of restoring secularized or fallen
image bearing to its pre-fall form.

In the preservation of art and history, restoration is often necessary to undo the damage of van-
dalism. The Oxford English Dictionary defines the word “restoration” as “the action of returning
something to a former . . . condition.” That is the ideal goal of the Christian mathematics professor;
teaching and practicing the standard knowledge and skills of mathematics while restoring the de-
faced sacred elements at the hands of a secular worldview. As Dr. Scott B. Key says (see [5]), we
are “to begin the excavation of the deepest assumptions of our disciplines” and to “find the central
faith convictions that will illuminate the faith assumptions of our various disciplines.”

4 A Framework for Faith Restoration of Mathematics

The proposed framework will be rooted in the concept of Faith Restoration so far discussed. Ergo,
the framework’s outcome should be a faith-rooted understanding of mathematics, mathematical
research, and of the culture of mathematical communities. To accomplish this, Christian faculty
must clean the blemishes left by secular perspectives of the mathematical sciences. As specified
in the second section of the paper, faith should inform how a mathematician perceives the foun-
dations of mathematics. Specifically, mathematicians should reconsider their ontological positions
in light of their theological commitments. In fact, the ontological position of a Christian math-
ematician should become more nuanced in light of certain faith commitments (see the Calculus
example below). Furthermore, faith should deepen the reason and the ways mathematicians apply
mathematics to the real world. While the enjoyment of applied mathematics is important, the
Christian mathematician adopts a good Samaritan mentality by seeking to solve problems that are
unnoticed, ignored, or inconvenient. Faith reminds the Christian mathematician that when the
beauty of pure mathematics causes awe, it should ultimately lead to the awe of God. Lastly, our
assumptions about proper teaching, mentoring, and inclusion should be challenged and illuminated
by our faith. It is in these ways that the cleansing should be accomplished.

The cleansing should be done with care to not cause further vandalism in our pursuit of restoration.
This balance can be achieved with thoughtful analysis of mathematics from the vantage point
of faith as believing mathematicians hold every thought captive to Christ. While this paper is
not addressing the practice of discerning between what a blemish is and what a genuine faith
mark is within the mathematical sciences, it is worth noting that such discernment deserves its
own attention in separate papers or books. At the very least, the distinction between vandalism
and original markings should be determined by theological considerations (regarding ontological
positions) and Kingdom of God principles (regarding the intention of application and community
culture).

Presently, this paper proposes a model that invites Christians to restore the original faith markings
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of mathematics. The model invites faculty and students to renew the common assumptions of
our discipline through the aforementioned key three areas: mathematics teaching, mathematics
research, and mathematics culture.

The approach to restorative teaching via what the author calls “Faith Themes” is partly inspired
by the categories of faith integration for Christian higher education proposed by Holmes (see [3])
and expanded by Russell Howell (see [4]). Moreover, at the 23rd Biennial ACMS conference where
this paper was presented, the author was made aware of the prior work done by McCoy (see [7]
and [8]) via his own presentation at the same conference.

4.1 Restorative Teaching

One way to restore the assumptions students hold is to develop and incorporate a Faith Theme
into each of the department courses.
Definition 1. A Faith Theme is a faith-informed assumption about the mathematical sciences that
is periodically discussed throughout the course. The Faith Theme of a course should hold some
connection to the course purpose and description.

For the duration of the course, the professor should periodically expound on the Faith Theme
through specific faith discussions that argue and underline the overall Faith Theme. Professors
should assess a student’s understanding of the Faith Theme and its corresponding faith discussions
through a Faith Restoration assignment. It is important to understand that the Faith Theme
should be emphasized consistently throughout the semester. The student should have a memorable
understanding of the Faith Theme by the end of the semester. The author recommends using 5-10
minutes weekly to reiterate the theme and explore it through a faith discussion.

Faith Themes can be obtained through the exploration of the categories of faith integration for
Christian higher education proposed by Holmes (see [3]) and expanded by Russell Howell (see [4]).
Specifically, with the 5th category provided by Russell Howell, the following categories can provide
inspiration to select appropriate Faith Themes:

1. Foundational

2. Worldview

3. Ethical

4. Attitudinal

5. Pranalogical

Below are two examples of mathematics courses at California Baptist University, their given Faith
Themes, and the faith discussions that help to drive the Faith Theme throughout the duration of
the course.

MAT 245 Analytical Geometry and Calculus I

Faith Theme: The ontology and application of mathematics imply God’s existence.
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Explanation: Notice that the Faith Theme is a faith-informed statement about two things math-
ematicians discuss. These are the ontology and the applicability of mathematics. A secularized
perspective of mathematics or even a naturalist worldview would not have a faith-informed con-
clusion about the applicability and ontology of mathematics. How is this conclusive assertion
obtained? The Faith discussions guide the students through various reasons and arguments that
build the case of the Faith Theme. First, the professor argues that faith informs the Christian
mathematician that Anti-Platonism is a viable alternative for the Christian in light of the tension
that exists between Christian doctrine and the independence of mathematical objects under tra-
ditional Platonism. Then, the professor argues that Naturalism should not embrace Platonism.
Thus, for different reasons, the Christian and the Naturalist may embrace Anti-Platonism. From
that point, the professor uses various discussions, listed below only by title, to further argue the
main Faith Theme.

Faith Discussions:

• The existence of mathematical objects

– The abstract nature of mathematics in Calculus.

• Platonism and God

– The Case for Anti-Platonism
– The Aseity-Sovereignty doctrine. The problem of God and abstract objects.
– Naturalism is necessarily Anti-Platonist.

• Unreasonable applications of mathematics

– Eugene Wigner’s paper “The unreasonable effectiveness of mathematics”

• The applicability of mathematics as an argument for God’s existence by Dr. William Lane
Craig (WLC)

– Alex Rosenberg’s rebuttal to the WLC argument
– The Naturalist Die

• Defining Inherently Mathematical Physical Phenomena

– Example of Quantum Mechanics

• Cordero’s Modified Argument for God’s existence based on the applicability and ontology of
mathematics.

• Biblical support for the argument

– Romans 1:20
– Devotional on Romans 1:20

• Christian versions of Platonism that avoid the Problem of God and Abstract Objects
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MAT 145 Mathematical Methods in the Natural Sciences

Faith Theme: Faith in God is Reasonable within Science and Mathematics.

Explanation: Notice that the Faith Theme is a challenge to a typical naturalist perspective, namely,
that faith and the sciences are incompatible. For the remainder of the semester, the professor con-
tinues to develop and defend this statement through various arguments, inspired by the conversion
and faith journey of Francis Collins.

Faith Discussions:

• A brief history of faith and the sciences.

• Examples of Christians that are scientists today.

• The conversion of Francis Collins. Use his example to learn various arguments for God’s
existence.

• Argument for God’s existence via the applicability of mathematics to the physical universe.

– Discuss the ontology of and applicability of mathematics as an argument for God’s
existence.

– Romans 1:20

• Kalam-Cosmological argument for God’s existence.

– Big Bang Theory
– The possibility of a self-causing universe

• Fine-tuning of the cosmological constants-argument for God’s existence.

– One Objection: The Multi-verse
– Another Objection: Non-Carbon-based life possibilities.

• The historicity of Jesus.

• Christian perspectives on evolution.

Intentionality in Restorative Teaching

Faith Themes developed through Faith discussions keep Christian faculty accountable to restore
faith with consistency and excellence. This means that Christian faculty must renew their minds
to view the Faith Theme as an essential component of the course; not merely something that is
done to meet a requirement. Moreover, faculty cannot merely open the class with an unrelated
prayer and/or an unrelated scripture reading. While this is good Christian conduct, it is not
thoughtful faith restoration. Rather, a deep understanding of the Faith Theme must permeate
through our actions, assumptions, and interactions with others in the mathematical community.
Otherwise, the purpose of Christian higher education fades away. Christian higher education cannot
simply be higher education taught by Christians who have a great witness and ministry. For that,
there is much Christian representation in secular universities. Instead, Christian higher education
must be rooted in restoring faith in the disciplines. This requires intentionality, preparation, and
commitment.
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It is worth noting that there is a challenge to a semester-long commitment to restore faith periodi-
cally in our lectures. The challenge is that a faculty member rarely has enough time to cover all the
material of a course while providing quality instruction, opportunities for learning, and assessment.
Therefore, faculty may be discouraged from periodically restoring faith in the mathematical sciences
since the professor’s concern is for students to be academically prepared. However, as disciples of
Jesus, Christian faculty believe that any academic preparation should be Biblically rooted (see [1]).
While most of the time of a faculty member’s lecture is devoted to mathematics-specific outcomes,
starting a lecture with a very brief but substance-filled faith discussion will remind students that
any academic preparation must be rooted in the inspired word of God. This reminder is part of a
larger process that moves the minds of Christians beyond the compartmentalization of faith.

4.2 Restorative Research

In keeping with the heart of Faith Restoration, it is important to go beyond the pedagogy of
mathematics. Regarding research, mathematicians that have restored faith do not do research in
some unknown new “Christian” mathematics. Instead, Restoring research involves restoring the
reason one does mathematical research. Often, academics will follow their research interests as an
ultimate end. In other words, mathematicians typically become scholars of topics that fascinate
them within the mathematical sciences for the pure enjoyment of these. While mathematicians
should love their disciplines and passionately pursue the curiosities within, they must cultivate
their passion within the cruciform love of God and neighbor. That is, their research curiosities
should serve the purpose of loving God and loving their neighbors. This approach should generate
research that:

1. Glorifies God through the deep understanding of mathematics that reveals beauty and the
intricacies of the created universe (Romans 1:20)

2. Lovingly serves the neighbor via the application of mathematics towards solving real-world
problems. (Philippians 2:4)

This means that a Christian scholar should not seek to solve problems that are merely interesting
or exciting. Rather, a restored Christian scholar should seek to solve problems because in doing so
they consciously exalt God and/or because they compassionately love the sufferers of the problems.
It is important to emphasize that one can enjoy research interests. However, the enjoyment should
not stop at the object of one’s research. The enjoyment of said things should point our affections
toward God. Thus, while Christian mathematicians enjoy their research interests, they complete
their joy as their research serves others and illustrates God’s wondrous glory.

Furthermore, in emphasizing service through research, the community of mathematicians learns to
value careers primarily as ministries to individuals in need.

4.3 Restorative Culture

Like other scholars and educators, mathematicians participate in communities and networks of
peers. With such communities, one often finds cultural practices that have been passed down from a
mentor to a mentee or from a professor to a student. As math majors, graduate students, and faculty
share their experiences, they converge on common experiences, idioms, practices, expectations, and
approaches. It is likely that most Christian mathematicians have been influenced by these at secular
institutions. Much like in the opening analogy of this paper, Christian mathematicians may come
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to believe this is the true form of mathematics culture. But Kingdom principles reveal a way to
restore the culture of mathematics.

University professors bring a lot of emotional and psychological baggage in the form of discipline
culture. For example, one might hear an academic say that graduate school is supposed to be
hard and cause severe anxiety. Someone might even witness academic peers tear each other’s work
apart for the sake of one-upmanship. Whether faculty realize it or not, when they were graduate
students trying to survive the academic culture, they assimilated culture and assumptions from their
professors. And yet, faculty rarely stop to think about which aspects of the mathematics culture
are toxic and likely even detrimental to a student’s learning or to fellowship with peers. Even more
concerning, some faculty may unknowingly pass these toxic tendencies to their own students. While
academia tends to frown on grace, Francis Su (former president of the MAA) implores academics to
embrace grace in his highly acclaimed talk on the Lesson of Grace in Teaching (see [11]). Su recalls
when his advisor told him that he did not “have what it takes to be a successful mathematician.”
Fortunately, Su found a different advisor:

Persi Diaconis was an inspiring teacher. More than that, he had shown me a great
kindness a couple of years before. The semester I took a class from him, my mother
died and I needed an extension on my work. I’ll never forget his response: “I’m really
sorry about your mother. Let me take you to coffee.” I remember thinking: “I’m just
some random student and he’s taking me to coffee?” But I really needed that talk. We
pondered life and its burdens, and he shared some of his own journey. For me, in a
challenging academic environment, with enormous family struggles, to connect with my
professor on a deeper level was a great comfort. Yes, Persi was an inspiring teacher, but
this simple act of kindness—of authentic humanness—gave me a greater capacity and
motivation to learn from him, because we had entered into authentic community with
each other, as teacher and student, who were real people to each other.

Su went on to say about his new advisor, Persi:

By taking me to coffee, he had shown me he valued me as a human being, independent
of my academic record. And having my worthiness separated from my performance gave
me great freedom! I could truly enjoy learning again. Whether I succeeded or failed
would not affect my worthiness as a human being. Because even if I failed, I knew: I am
still worth having coffee with! Knowing my new advisor had grace for me meant that
he could give me honest feedback on my dissertation work, even if it was hard to do,
without completely destroying my identity. Because, as I was learning, my worthiness
does not come from my accomplishments.

The truth is that this realization is not only liberating for students, but also for faculty! With-
out grace amongst the community of mathematicians, the members of this community will seek
validation through achievements. Mathematicians will compete with one another and seek to de-
molish the achievements of others; for if the value of people is in what they achieve, then those
that achieve more will be of more value. But grace frees people to enjoy identity and value in their
adoption as sons and daughters of the Father. Consequently, Christians can enjoy the pursuit of
the mathematical sciences free from the pressure of having to prove themselves.

Faculty must lead the way to create a safe mathematical community of faculty and students alike
where the mind of Christ reigns supreme over their academic endeavors. This common mind would
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produce the humility of Christ that frees believers to count others as more significant. What
a Kingdom-like community this would be! It would stand in direct contrast to the patterns of
worldly academia. When students see that faculty are free from the crushing pressures of academic
validation, while also free to pursue the academic endeavor for the sake of the cruciform love of
God and others, students will see that their professors know the truth and that indeed the truth
has set them free.

Restorative culture should also make mathematicians aware of issues that academia has historically
neglected. For example, lack of representation in STEM from various ethnic groups and women is
still an ongoing problem (see for example [10]). Moreover, the church provides the most complete
case for the need for diverse STEM representation. Christian higher education as such should
foster an academic culture that represents every nation, tribe, and language. This is an essential
component of the faith since disciples realize that the fullest expression of the union of the body of
Christ is found in the diversity of its united members in Christ:

Revelation 7:9-10 ESV After this I looked, and behold, a great multitude that no one
could number, from every nation, from all tribes and peoples and languages, standing
before the throne and before the Lamb, clothed in white robes, with palm branches in
their hands, and crying out with a loud voice, “Salvation belongs to our God who sits
on the throne, and to the Lamb!”

Galatians 3:28 ESV There is neither Jew nor Greek, there is neither slave nor free, there
is no male and female, for you are all one in Christ Jesus.

5 Closing Remarks

While many Christian mathematicians understand the purpose of Restoring Faith, Christian faculty
must make sure that their implementation matches their intended purpose. Without intentionality,
some may treat the restoration of faith as inconvenient duty and not as something that is central and
vital to Christian Higher Education. Christian professors must understand that they are ministers.
Their ministry is the faith restoration of the mathematical sciences. Their passionate liturgy is the
methodical and intentional teaching, research, and culture that cleans the vandalism of a secular
worldview.
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Abstract

In the present paper we introduce the Logic Loop as a nuanced ontology that weaves perspectives
from various individual ontological positions. In Section 2 of the paper, we turn to various case
studies as support for the Logic Loop. In Section 3, the Logic Loop is compared with three of
the various ontological positions to show none sufficiently illustrates the Logic Loop’s makeup.
In Section 4 we distinguish three broad categories of ontologies that will help us understand
their importance as well as how the Logic Loop can address each of the three. In Section 5 we
suggest a list of seven ontological concerns for a Christian mathematician, and through these
we formally introduce the Logic Loop. Section 6 argues that a Christian mathematician that
subscribes to the Logic Loop will see the practice of mathematics as a habit of grace or a liturgy.
Section 7 concludes the paper by highlighting the freedom in the ontology of mathematics that
accompanies the Logic Loop.

1 Introduction

The prime occasion from which arose my discovery of the method of the Characteristic Triangle
. . . happened at a time when I had studied geometry for not more than six months . . .

Gottfried Leibniz, letter, 1680 [8, p. 543]

Then I shall show how this line can be described by a motion that I have invented.

Gottfried Leibniz, Acta Eruditorum, 1693 [19, p. 282]

In the philosophy of mathematics, a central discussion and concern is the ontological nature and
related existence of mathematical objects. Do mathematical objects exist? If so, in what sense?
Do we invent or discover mathematics? That is, is mathematics the study of real abstract objects
awaiting discovery or is it a useful fiction or construction we have invented to describe the physical
world? In this paper, we argue for a simple ontology vis-a-vis what we call The Logic Loop.
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The Logic Loop is an ontology that treats mathematics as an ongoing endeavor of invention and
discovery within a Christian worldview. We call it the logic loop because we see the rules of logic
as the objective canvas on which the loop takes place. That is, if we are to explore and refine
mathematics, the only constant is the rules of logic as applied to any selected/invented axioms. We
believe that history provides a solid case for these stages of invention and discovery. Sometimes
humanity invents axioms. Upon exploring these axioms, we discover that our axioms are insufficient
or redundant. When we do so, we refine a new invention. Thus, the two stages of invention and
exploration are revisited via processes of exploration and refinement. To use a familiar analogy,
mathematical objects become game pieces and axioms are the rules of our game. After we have
invented this game we can explore to see whether or not this game is consistent. If we discover flaws
in the game, we refine it with a newer and better invention of the game. In this sense, mathematical
objects are not abstract objects that exist.

Phrased another way, mathematics is about the practice of mathematics and involves stages of
invention and discovery that are connected through the processes of refinement and exploration.
What Hilbert called a game, we see as a Logic Loop that includes the iterative creation and playing
of the game. Whether game or Logic Loop, invention is the stage where new mathematical ideas
are formed. Refining is a process of cleaning up and/or distilling existing ideas for clarification.
Exploration is a speculative process of asking, “What if?” Finally, the discovery stage is about
finding applications for mathematics, discerning patterns, and searching results for consistencies
(and inconsistencies). Together these stages and processes form the Logic Loop of mathematics.
We contend that this addresses the praxis of mathematics by which we mean the work of the
mathematician, the philosophy of mathematical practice, and the ontology of mathematics.

2 Case Studies Introduce the Logic Loop

The very nature of a loop makes identifying its starting point a challenge, but the story of calculus,
our first case study1, traditionally begins with Newton or Leibniz even though mathematicians had
been working on extrema, tangent, and area questions for nearly two millennia prior. While Newton
revolutionized physics and Leibniz was a philosopher of the first rate, they shared an entirely
mathematical context and motivation for their invention of calculus. Their near simultaneous
invention and recognition of computational methods connecting the tangent and area questions
exemplifies the formation of new mathematical ideas. But what they published was not calculus
as we know it today; especially the work of Newton, whose fluxions (derivatives) and reliance
on geometric (rather than analytic) methods were difficult to apply. This reminds present day
practitioners that raw and unrefined invention is just one step in the Logic Loop of mathematics.

Before proceeding, it is worth asking whether Newton and Leibniz did indeed invent the calculus;
perhaps they were its discoverers? This is an especially relevant question given the epigraphs above
that show Leibniz referring to both inventive stages and periods of discovery. Are we to accept
one and discard the other? Certainly not! Within the context of the Logic Loop both remain true.
Newton and Leibniz were also discoverers who found applications for mathematics and discerned
its patterns. For that matter, they also refined mathematics and were math explorers. But their
role in this case study is as inventors of new mathematical ideas.

What followed Leibniz and Newton’s invention was a rapid era of refinement leading to stages of
1We have chosen to introduce the Logic Loop via case studies in response to the implicit call for such an analysis

in Mancosu. [14, p. 2]
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discovery. Noticeably absent were limits and the extremely precise definitions we associate with
mathematics. Notations such as the elongated S of Leibniz’s integral being adapted for sums (S
being from the Latin summa) were refined. Applications were found including countless uses of
power series within calculus and differential equations. But what seemed to fuel the explosion
was the discovery of numerous applications of calculus in the physical sciences. Newton began
this tradition with his work culminating in Philosophiæ Naturalis Principia Mathematica (often
shortened to Principia). This included deeply influential examples such as proving Kepler’s laws
for planetary motion from just the calculus and a few basic physical laws.

The introduction of transcendental functions into calculus after their noticeable absence in the first
half century of calculus is an example of exploration. While the concepts of logarithms, expo-
nentials, and most notably trigonometric relationships existed, they were generally represented by
power series. In particular, the sine was entirely understood geometrically. It wasn’t until 1739 that
Euler invented our present-day sine function representation that is continuous everywhere. “Until
that time there was no sense of the sine and cosine functions being expressed, like the algebraic
functions, as formulas involving letters and numbers, whose relationship to other such formulas
could be studied using the techniques of the calculus.” [8, p. 583]2 Euler asked, “What if” these
seemingly unrelated ideas are actually connected? By bringing trigonometry (and transcendental
functions) into mainstream calculus, Euler began a new wave of discovery as cumbersome power
series were replaced by their modern representations. More broadly, mathematicians continued to
explore their powerful new tools (with only intuitive attention paid to nuance) to discover appli-
cations in motion, engineering, hydraulics, and a host of other fields. Anachronisms in our present
texts such as the cycloid and hyperbolic functions were discovered to be the source of cutting-edge
applications in pendulum clocks and the shapes of suspended cables.

The start of the 19th century saw the discovery of inconsistencies in this laissez-faire logic of calculus
such as conflicting views around infinite series, continuity, and convergence. Centering around the
soon-to-be foundational concept of the limit, there was a movement to refine the work of the cavalier
elders who had simply dismissed and discarded “sufficiently small” terms. Faulty assumptions
and sloppy notations were identified, and assumptions challenged, culminating with the invention
of Weierstrass’ famous pathological everywhere-continuous, nowhere-differentiable function. This
season of fault-finding prompted an era of rigorization and refinement of calculus most recognizable
today through Cauchy’s invention of a precise definition of the limit (delta-epsilon).

Thus, calculus illustrates the historical reality of mathematics as an ongoing process. That is, math-
ematics is a Logic Loop alternating between stages of invention (new ideas formed) and discovery
(finding applications and looking for inconsistencies) through processes of refinement (distillation)
and exploration (asking, “What if?”). We will now consider additional case studies to clarify what
is meant by each of these terms.

2.1 Case Study: Multiple Geometries

Mathematics has long been a refuge for those seeking certainty with no stronger bastion than that
of Euclid’s Geometry. While Euclid was perhaps more a collector and organizer than originator,
his structure of axioms, postulates, theorems, and proofs became the gold standard for clear and

2For example, Katz [8, p. 593] relates how Euler solved differential equations using power series methods, but did
not recognize a sine or cosine in the resulting answer. It was not until 1739 that Euler realized that the sine function
would enable closed-form solutions of such higher order equations to be given. In a paper from March of that year,
Euler gives what is perhaps the earliest use of the sine as a function of time.
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necessary reasoning. In particular, thinkers were drawn to the irrefutable givens such as, “things
which are equal to the same thing are also equal to one another,”3 and “that all right angles
are equal to one another.”4 These axioms/postulates were irrefutably discovered in nature as we
discerned abstract patterns take on physical form and geometry had numerous applications to
ordinary living. Geometry was seen as even more secure than the ground we walk upon. These
ideas were not just resigned to the ivory tower. Within fiction, famed Russian novelist Fyodor
Dostoevsky’s character Ivan Karamazov espoused, “if God exists and He really did create the
world then, as we all know, He created it according to the geometry of Euclid . . . ” [2, p. 216]
This self-evidence and undeniability is an example of what led many to believe in the existence of
abstract objects (mathematical Platonism) awaiting discovery by clever math explorers.

However, one of Euclid’s postulates was different. Even to the uninitiated, the fifth postulate stood
out being triple the word count of the others. Geometers sought long and hard to reword or replace
this black sheep of the postulates. Playfair “simplified” the phrasing to: “Through a given point P
not on a line L, there is one and only one line in the plane of P and L which does not meet L.” Still
overly complex, mathematicians sought to eliminate the postulate by proving the unique existence
of parallel lines from within the other axioms. Both the revised wording from Playfair and the
attempts to make it unnecessary are examples of what is meant by refinement. So here, refinement
refers to the fine-tuning of wording/technique and repeated attempts to improve geometry and do
away with the troublesome fifth postulate.

“What if?” Geo-metry: Measuring the earth. Wherever humans looked (whether in nature or in
the realm of mathematics), parallel lines behaved exactly as Euclid postulated. To question Euclid
was akin to questioning the nature of reality. But about two millennia after Euclid, bold math
explorers such as Saccheri, Bolyai, and Gauss began to dare to ask, “What if?” Challenged by the
work of Russian mathematician Lobachevsky, Dostoevsky continued the previous passage, “. . . they
even dare to dream that two parallel lines, which according to Euclid can never meet on earth,
may meet somewhere in infinity.” What if there are no parallel lines? What if there are multiple
parallel lines through a point? Because Euclid’s axiomatic approach had been adopted across the
sciences, social science, and theology, the impact of these brave math explorers asking, “What if?”
was dramatic. “What if” is the key to exploration.

The necessary absolutes of Euclid could have been otherwise. Specifically, in the 1820’s and 1830’s,
new systems were invented; geometrical realms devoid of parallels or, alternately, home to an
infinite number of parallels.5 Non-Euclidean geometries were a new mathematical idea breaking
in and changing the nature of mathematics and the world. In philosophy at large, “one of the
basic tenets of [Kant’s] system was the idea that Euclidean geometry is the only possible way of
thinking about space.” [18, p. 183] So these mathematical explorers bucked common understanding
in mathematics and intellectual culture at large. Needless to say, the invention of non-Euclidean
geometries required boldness and was the catalyst of changes across a multitude of disciplines.

A surprising event took place decades into the life of these new non-Euclidean geometries. In the
world of physics, Einstein invented the theory of relativity. In fleshing out his ideas, he dared to
ask about the geometry of the universe and this explorative “What if?” He connected seemingly
unrelated ideas and opened up a new wave of discovering applications in non-Euclidean geometry.

3This is the first of Euclid’s five axioms.
4The is the fourth of Euclid’s five postulates. In modern mathematics, we use the term “axiom” and would have

said that these five postulates were the basis of Euclid’s axiomatic system and method.
5There were earlier hints, but perhaps it is easiest to date non-Euclidean geometries to papers published by

Lobachevsky (1829-30) and Bolyai (1832). [9, p. 83]
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Einstein also provides a capstone on this case study on the nature of geometry and how the work
of geometers manifested each of these four characteristics: discovery, refinement, invention, and
exploration.

2.2 Case Study: The Foundational Movements

The “philosophy of mathematics” is sometimes seen as synonymous with the foundational schools
formed at the start of the twentieth century. What follows is a sketch of these ideas and events
as they pertain to the Logic Loop. It should ring true for those familiar and resources are in the
notes for those wanting more detail.6

Mathematics is often seen as the most certain of all knowledge providing a perfect one-to-one
correspondence to the natural world. As shared in the last section, with its structure of axioms,
postulates, and theorems, Euclid’s Elements was the North Star guiding the way for over two
millennia. But the foundation of geometry was adjacent to, if not resting upon, sand. Questions
around the parallel postulate led to the invention of non-Euclidean geometries. The natural world
could no longer serve as our test for the truth of axiomatic systems. A new foundation was needed:
could logic suffice?

With nature ruled out, Gottlob Frege sought to uncover a new basis for mathematics.7 In 1884 and
through the concept of “set” adopted from Bolzano, Frege discovered and shared the “foundation
for arithmetic” in his book by the same title. These were previously unrecognized patterns and
consistencies in the very structure of arithmetic. Through set-theory and logic, Frege believed that
the basis of all of mathematics could be secured starting with its most rudimentary topic: logic.
This is the origin of the logicist school.

Frege’s ideas were neither widely known nor easily accessible. But Frege only needed one disciple.
Bertrand Russell was captivated by the certainty provided by logicism but realized that more
refinement was needed. His Barber’s Paradox exposed a fatal flaw in Frege’s program and led to
a series of refinements in logicism, each intending to address paradox without sacrificing the self-
evidence of the axiomatic system. Only somewhat successful in this, Russell’s labors paralleled the
invention of the alternative foundational schools of formalism and intuitionism.

Representative of formalism, David Hilbert outlined 23 unsolved problems in mathematics (for the
International Congress of Mathematicians in 1900) which can be seen as a call to explore the limits
of the formalist school.8 Of all the solutions to Hilbert’s questions, perhaps the most remarkable
was that made by Kurt Gödel who, in a pair of papers published in 1931, resolved Hilbert’s second
question on the consistency of the axioms of arithmetic. In particular, Gödel proved that the
consistency of certain formal systems could not be proved from within the systems themselves.
Effectively showing the hubris of Hilbert’s claim that in mathematics there is no, “we do not
know and will not know”, Gödel’s discoveries of consistency/inconsistency in the formalist program
sparked a new series of refinements as well as the invention of additional ontologies of mathematics
beyond the foundational schools.

6Two good sources on the foundational schools that are referenced elsewhere in this essay are Kline [9, pp. 216–257]
and Hersh [6, pp. 137–164].

7In reference to Frege, we have chosen to use the word “discover” to honor Frege’s adherence to mathematical
Platonism (about which more will be said later).

8Hilbert presented 10 questions in his talk and the remainder were published in the two following years. Solutions
to his list of questions were discovered as early as 1900 and as recently as 2002 leaving just three questions completely
unresolved.
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Rewinding momentarily, prior to Gödel’s theorem was a season of exploration. Gödel initially
set out to prove Hilbert’s claim just as Russell had wanted to prove and build upon the work of
Frege. For both logicians, there came a time when they asked the math explorer’s question: “What
if?” Before Gödel’s theorems or Russell’s paradox could be discovered, they made the shift from
believing the claim true/valid to looking for a counterexample. Thus, while perhaps quite brief,
their discoveries each contain a critical element of exploration.

The final foundational school, intuitionism, is more overt in its ontology of invention. Its oft-
quoted forefather, Leopold Kronecker, said, “The integers were created by God; all else is the
work of man.” [6, p. 74] This school famously rejected mathematical notions that could not be
constructed including a rejection of the axiom of choice as well as the law of excluded middle. The
intuitionists are an outlier among mathematical philosophies in their insistence that mathematics is
invalid unless we possess a method for positively reaching the result.9 They not only hold that math
is invented, but dictate the rules by which acceptable new mathematical ideas may be formed. This
approach excludes large swathes of mathematical practice, bringing to mind Maddy’s words, “If our
philosophical account of mathematics comes into conflict with successful mathematical practice, it
is the philosophy that must give.” [14, p. 11]

While this case study focused on the Foundations of Mathematics may span the least time, it
again highlights the four phases of mathematics and mathematical practice: The “discovery” of the
Foundations of arithmetic followed Russell’s “refinement” of set-theory. Formalism and intuitionism
were “invented” and Gödel dared to ask the “What if?” question that marks all math explorers.

2.3 Case Studies and the Logic Loop

Case studies bring life to models and ideas. However historical narratives are rarely as tidy as the
neat little diagram we use to model the Logic Loop. Further explanation and guidance is required.

If I may introduce a new metaphor, the rectangles in the diagram indicate that invention and
discovery are stages in mathematical practice when a mathematical child is born. Sometimes this
mathematical entity is a first-born and we call this invention. Other times it has older siblings in
which case we call it discovery.

9For example, suppose either A exists or B exists. If we know that B does not exist, then most mathematicians
hold that A must exist. However, this requires the use of the Law of the Excluded Middle and so intuitionists would
maintain that we do not know whether A exists.

ACMS Journal and Proceedings Page 94 23rd Biennial Conference



For example, we claim that Newton and Leibniz invented the calculus. Non-Euclidean geometry
was invented in the early 1800’s. And formalism and intuitionism were entirely new ways of thinking
about the nature of mathematics. While a historian of mathematics would likely argue that these
ideas rest on the shoulders of their predecessors, we see this as exemplifying the cyclic nature of a
loop and press on.

We use three examples to represent the stage of discovery; finding applications for mathematics,
discerning patterns, and searching results for consistencies (and inconsistencies). In the 19th cen-
tury, consistencies and inconsistencies in analysis were discovered which led to the rigorization of
the calculus. Patterns were recognized in nature that were critical in developing intuition around
geometry (as well as applications of geometry to nature). And Frege focused on discerning patterns
in the very building blocks of arithmetic itself.

Returning to the diagram, the diamonds of refinement and exploration represent the challenging
process of raising mathematical children. Refinement is the day in, day out process of cleaning up
and distilling mathematical ideas. We referenced the notation of the calculus, rephrasing of the
fifth postulate, and Russell’s labor building out Frege’s logicism.

The remaining diamond, exploration, comes with a flash of brilliance and the hard labor of a miner.
Asking “What if?” is the hallmark of exploration and is the process of making new connections or
going in a new direction from predecessors. Euler made a connection between trigonometry and
power series and thus was a primary introducer of transcendental functions into calculus. Einstein
arrived at a whole new way to geometrize the universe. And Gödel dared to ask if Hilbert might
be wrong.

The careful reader might ask if making such a sharp distinction is justified: Who is to say whether
a square should be a diamond or this was invented or discovered? While a reasonable concern
and one we too ask ourselves, we believe it misses the larger point. Mathematical practice could
not proceed without the stages of invention and discovery and the processes of refinement and
exploration. They are not wholly distinct and the historical mathematical practice rarely has a
clear beginning or end, which is why we call it a loop. The bidirectional arrows remind us that the
loop is not traversed in a single direction and, for that matter, we could live in a season of, say,
refinement and discovery for quite some time. But while the Logic Loop model may resonate, we
have yet to address the nature of mathematics itself: its ontology.

3 The Logic Loop and three Ontologies of Mathematics

Seen from one light, the mathematical Logic Loop is an inclusive ontology with many likely allies.
The mathematical Platonist supports its aura of discovery. The formalist approves of the constant
refinement. The naturalist nods at the primary role of human ingenuity, and historians of math-
ematics smile at the creative exploration. At the same time, as a compromise position, the Logic
Loop satisfies none of the major ontologies. It disappoints the nominalist by acknowledging the
indispensability of mathematics and frustrates the Platonist by denying the existence of abstract
objects. We found the following diagram helpful in parsing ontological views in regard to math-
ematical objects. [5, p. 40] Broadly speaking, the next three sections fall under the categories of
Platonism, anti-realism, and the various theistic branches.
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3.1 Mathematical Platonism

Mathematical Platonism holds that mathematical truths such as numbers, perfect geometric fig-
ures, and the great truths live in Plato’s heaven for abstract objects. This certainly includes the
Golden Ratio, Pi, Euler’s number, and the Pythagorean Theorem. It may include every consistent
mathematical statement. Thus, each time we “discover” a new mathematical truth, whether awe
inspiring like the fundamental theorem of calculus, or seemingly trivial like 1 = 1, we are simply
identifying and isolating one of the members of Plato’s mathematical horde.10

There are three primary objections to this view. The first is that there is no and can be no physical
evidence for a realm of abstract objects. The second is, “it seems that these abstract, eternal,
objective things fall outside the range of our human cognitive powers.” [13, p. 354] And, third, even
if it exists and is knowable, there is no reason to assume that these abstract objects would have
any relevance to the physical world. Mathematical Platonism effectively describes math as 100 %
discovery and 0 % invention.11

The mathematical Logic Loop is not mathematical Platonism as it acknowledges that mathematics
includes components of both discovery and invention. The line between the two lies in murky water,
but even the child learning arithmetic has occasion to wonder about the universality of mathematics
while also asking, “How did someone come up with this?” In order to walk this tight-rope, within
the Logic Loop model, we reject the existence of abstract objects but remain open to concrete
realism. Discovery and invention are the reality of the mathematical process. But the axiomatic
games of the mathematical mind(s) generate beautiful mathematical realms in need of discovery.
Mathematicians of all regions and across all ages are both discoverers and inventors.

3.2 Nominalism

A nominalist paradigm for mathematics denies the existence of abstract mathematical objects (for
this reason, it is sometimes referred to as anti-Platonism). While some have argued for physical or
psychological explanations for math, the nominalist sees it as a human fiction or useful story humans

10It should be noted that there are as many versions of Platonism or mathematical realism as there are philosophers.
For example, Maddy outlines at least five in her book, Realism in Mathematics in an effort to explain her own set-
theoretic realism. [12, pp. 20ff]

11This plenitudinous mathematical Platonism wherein every possible coherent mathematical statement and object
exists, is called “full blooded Platonism.”
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use to explain the world. This can range from the socio-mathematical humanists who practice
mathematics within culture to formalists who see it as a game we create and play with meaningless
symbols. Nominalists maintain that the patterns we find may be beautiful but certainly are not
eternal truths that transcend time, place, and culture. In short, the nominalist holds mathematical
work is 100 % human inventive labor and 0 % discovery of an eternal mathematical reality.

There are two primary objections to this brand of mathematics. The first is that it says that
any sense of eternal transcendence within mathematics must live in our head: think the Golden
Ratio. As if giving the appearance of individual transcendence isn’t sufficient, in a discussion
of the mathematical beauty, Francis Su writes of the famous formula eiπ + 1 = 0, “there is no
obvious reason why five of the most important constants in the universe should appear in the same
equation.” [20, p. 73] While humans are capable of incredible creativity, in other disciplines, there
is a name for duplicate independent artistry: plagiarism. But repeated and independent invention
is commonplace in mathematics. Elsewhere Su writes, “When you see the same beautiful idea pop
up everywhere, you begin to think that it is pointing to some deeper truth you haven’t yet grasped.”

The second objection was summarized by Albert Einstein who wrote, “How can it be that math-
ematics, being after all a product of human thought which is independent of experience, is so
admirably appropriate to the objects of reality? Is human reason then, without experience, merely
by taking thought, able to fathom the properties of real things?” [3, p. 233] Or, as Shapiro writes,
“Why are the mathematical games so useful in the sciences? After all, no one even looks for
useful applications of chess. Why think that the meaningless game of mathematics should have
any application? It clearly does, and we have to explain those applications.” [17, p. 146] Return-
ing to Einstein, anti-Platonists like himself (including nominalists) must address this unreasonable
effectiveness as explainable, irrelevant, or unsubstantiated.

Our Logic Loop describing mathematical practice is not so dogmatic. It fully embraces the ingenuity
of men and women across the ages to invent mathematical ideas and systems. The model allows
for the creative and hard work of mathematicians to refine and explore these ideas using their
cognitive powers. The loop embraces the explanatory power of language, and it acknowledges the
fact that mathematical systems are established inside socio-cultural contexts. At the same time,
the loop allows for a sense of discovery and transcendence that lives beyond feelings and perception.
Whether discovering something new or simply carving away the excess to invent new mathematics,
we are image bearers and co-creators.

3.3 Theism

Writers on the history of the philosophy of mathematics regularly make religious references. Morris
Kline drew parallels between the demise of axiomatic confidence in mathematics and the Tower of
Babel. [9, p. 71, 95, 207, 226] Mario Livio wrote, Is God a Mathematician? and Reuben Hersh
penned, “The present trouble with the ontology of mathematics is an after-effect of the spread of
atheism.”[6, p. 126] While likely not religious themselves, they are tapping into a spiritual theme
within mathematics that stretches back hundreds of years. Perhaps the most famous mathematical
mystic is Johannes Kepler. His Christian faith was the origin of his belief that the universe is both
rational and intelligible. “Those laws [of nature] are within the grasp of the human mind; God
wanted us to recognize them by creating us after his own image so that we could share in his own
thoughts.”12 Theism isn’t a philosophy of mathematics per se; rather it is a metaphysical view

12Kepler, Johannes. Letter (9/10 Apr 1599) to the Bavarian chancellor Herwart von Hohenburg. Collected in
Carola Baumgardt and Jamie Callan, Johannes Kepler Life and Letters (1953), 50. This source is perhaps the origin
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of the world that believes that the rationality of our mathematical world is best explained by the
existence of a rational entity outside of space and time.

Within mathematics, there seems to be two objections to invoking supernatural elements. The
first is the rise of atheism and its dismissal of unscientific explanations as pseudo-answers. Perhaps
the most famous example of this comes from a reported interchange involving Napoleon, Laplace,
and Lagrange. After reading his treatise Celestial Mechanics, Napoleon is said to have shared with
Laplace: “You have written this huge book on the system of the world without once mentioning
the author of the universe.” To this, Laplace replied, “Sire, I had no need of that hypothesis.”
As if this gem isn’t sufficient, the story continues that when later told by Napoleon about the
incident, Lagrange commented: “Ah, but that is a fine hypothesis. It explains so many things.”
(MacTutor) This anecdote is the inspiration for numerous books and articles (both in support of
and discounting) on the God hypothesis.

The second concern is that divine explanations for mathematics are unclear and ill-defined in an
area where we are seeking absolute certainty and precision. A novelization on Bertrand Russell
captures this nicely. “Nothing in my life was quite the same after that first meeting with Euclid.
In his work, I found what I had vainly sought for in Grandma’s faith! . . . Reason [and] knowing
something with total certainty.” [15, p. 57] We struggle even in providing a coherent and consistent
definition of faith, but within mathematics we have “proof.”

The Logic Loop is more flexible, acknowledging that the ontology of mathematics extends well
beyond mathematics into philosophy and theology. Lagrange and Laplace were overly dogmatic.
At the same time, it may not be as simple as claiming all of mathematics is ideas in the mind
of God.13 The Logic Loop may not avow abstract objects but allows space for other forms of
realism.14 If you will, the Logic Loop may be incompatible with “either-or” theism but should be
acceptable to “both-and” belief systems.

However, mathematical Platonism, nominalism, and theism are not the only presuppositional po-
sitions one might take toward mathematics. As we explore the question “What is mathematics,
really?” (Hersh), we quickly learn the dead ends and questions along each path.

4 The Threefold Problem of the Ontology of Mathematics

Ontology is the branch of philosophy studying the nature of being or existence at a first principles
level. In terms of mathematics, the ontologist asks: what is mathematics about? What are
numbers, geometric figures, or theorems and proofs? As noted historian of mathematics Judith
Grabiner shared, “Is the square root of two a noun or adjective?”15 Are the natural numbers
objects, properties, or something else entirely?

Histories of mathematics and readings on the philosophy of mathematics (within both mathematics
and logic) tend to describe a wide range of views. While there is agreement around the foundational
schools of logicism, formalism, and intuitionism, each had predecessors and has descendants. (This

of the unattributed Kepler phrase, “Thinking God’s thoughts after Him.”
13This phrase has roots in Augustine. See http://readingthesumma.blogspot.com/2010/05/question-15-ideas-in-

mind-of-god.html for more information.
1413. See for example [5, pp. 1ff].
15Personal conversation between Dusty Wilson and Judith Grabiner (October 22, 2021) wherein Dr. Grabiner

quoted her husband Dr. Sandy Grabiner.
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is further complicated by the propensity of authors to coin their own nomenclature. For example,
regarding her truth theory of realism in mathematics, Penelope Maddy writes, “This sort of theory
has various names - redundancy theory, disappearance theory, deflationary theory - but I’ll call it
a disquotational theory.” [12, p. 17] All this poses a challenge for locating the Logic Loop faithfully
within the greater historical and philosophical narrative. But both are important. In the words of
Imre Lakatos, “The history of mathematics, lacking the guidance of philosophy, has become blind,
while the philosophy of mathematics, turning its back on the most intriguing phenomena in the
history of mathematics has become empty.” [10, p. 2]. With case studies grounding our studies and
the guidance of past and present philosophers of mathematics, the Logic Loop is neither empty nor
blind.

Some may believe ontological concerns are irrelevant for the daily working of mathematicians. But
we take to heart the words of Irish mathematical physicist John Synge who wrote, “[E]ach young
mathematician who formulates his own philosophy - and all do....” (Kline) As is often quoted,
ideas have consequences and the Logic Loop is formed, at least in part, to push back against
absolutism within mathematical paradigms. But what are the ontologies that the loop is meant to
address? We frame the Logic Loop in the context of three broad ontologies of mathematics. They
are ontologies that root existence within math/logic itself (intrinsic explanations), explanations
from nature, culture, or the mind (extrinsic), and those that go beyond the mind and empiricism
(transcendent explanations).

4.1 Intrinsic Explanations

An intrinsic explanation for mathematics is one that comes from within mathematics (or logic).
Classic examples include Euclid’s geometry and the foundational schools of logicism and formalism.
What these have in common is that they are predicated on the idea that there is a collection of
(mathematical) objects, rules, or a structure (such as the axioms of Zermelo-Frankel) from which
the rest of mathematics may be derived.

Looking inside mathematics for its own ontology runs afoul of two primary objections. The first
are the logical paradoxes of Russell and incompleteness theorems of Gödel. While we must be
careful not to overstate their impact, broadly speaking both seem to say that the more carefully
mathematical systems are constructed, the more clearly the self-contradictory nature of intrinsic
explanations becomes. This Tower of Babel culminated in Gödel’s work which formally proved that
mathematics was not internally complete.16

The second objection stems from the applicability of mathematics to the natural world. Even
were intrinsic explanations logically consistent, there is no obvious reason that it should reflect the
patterns of nature. “[H]ow can the fact that one mathematical statement follows from another be
correctly used in our investigation of the physical world?” [12, p. 25] Or phrased another way,
there is an “unreasonable effectiveness of mathematics in the natural sciences” for “a game played
according to certain simple rules with meaningless marks on paper.” [7, 21]

4.2 Extrinsic Explanations

For outsiders to mathematics, it may seem strange that mathematicians would have looked to in-
ternal narratives whereby math was explained from within mathematics. The observer can scarcely

16There exist theorems which are true within a finite set of axioms, but not provable within those same axioms.
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avoid visions of the Hindu mythology whereby the Earth rests on the back of four elephants who
are themselves supported on a giant turtle. What supports the turtle and how can math explain
math? These (as well as many philosophers and practitioners of mathematics) see things otherwise
and believe mathematics is both inspired by and generated based on the natural world. As Galileo
famously wrote, “The universe cannot be read until we have learnt the language and become famil-
iar with the characters in which it is written. It is written in mathematical language, and the letters
are triangles, circles and other geometrical figures, without which means it is humanly impossible
to comprehend a single word.” (Galilei) Math is simply the language we create to describe the
natural world. It is neurons firing a certain way in our heads. Math is a cultural agreement to see
things a certain way.

Here again there are three points of contention. The first is that an extrinsic ontology requires that
mathematics be a miracle drug wherein the same concept (say the derivative or integral) applies
across numerous branches of science (and social science). “What accounts for the connectivity of
mathematics? How is it that concepts developed in one part of mathematics suddenly turn out to
be connected to apparently unrelated concepts in other areas?” (Corfield in Mancosu) It may be
that if we have only a hammer, every problem appears as a nail. But if that is the case, then there
are a lot of nails (applications) and multiple simultaneous inventors of the hammer (mathematical
techniques). But if the hammer and nail have such unreasonably effective applicability, then this
naturally prompts us to explore a related issue: universality.

Universality has two forms. The first is that the same mathematical concepts have been “discov-
ered” in multiple times/places; Pascal’s triangle, the Pythagorean theorem, calculus, non-Euclidean
geometries, . . . the list goes on. The second part of universality is that there are concepts that keep
appearing; pi, the golden ratio, Euler’s number. It’s hard to escape the feeling that mathematical
questions are too broad to explain with such a small set of tools.

The final concern with an ontologically extrinsic explanation for mathematics is perhaps less philo-
sophical and more experiential. Many practitioners of mathematics feel a sense of discovery. They
feel that they have stumbled upon or unlocked a pattern that goes beyond purely humanistic ex-
planations. Putnam is quoted as writing, “Quine . . . for years stressed both the indispensability
of [talk about] mathematical entities and the intellectual dishonesty of denying the existence of
what one daily presupposes.” [12, p. 30] Why double-speak in how we refer to our own work? If
mathematics is just a structure, language, or fiction that we create to describe the world, why is it
seemingly impossible to escape the sense of wonder and awe in mathematics?

4.3 Transcendent Explanations

Transcendent explanations are of (at least) two forms. The ontology of mathematics may simply
“transcend” intrinsic and extrinsic explanations including self-existence and connection to the spa-
tiotemporal world. Alternatively, mathematics may owe its being to a transcendent Being who
brings mathematics into existence and/or provides humans the capacity to understand/interact
with mathematical objects.

This latter explanation may include but doesn’t require the adoption of mathematical Platon-
ism. That is, there are theists who are Platonists and theists who are not Platonists. There are
naturalists who are Platonists and there are naturalists who are not Platonists. Furthermore,
theists inclined toward realism in abstract objects should be cautious, knowing that there are se-
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rious theological concerns with the idea of mathematical Platonism.17 So, while we use the term
“transcendent” broadly, please understand that it includes more breadth than simply mathematical
Platonism.

Case in point: Penelope Maddy, one of the few female philosophers of mathematics is herself a
set-theoretic realist. About her motivation, she writes, “my motivation . . . is naturalism; set-
theoretic realism18 seems to me the most promising approach for bringing mathematical ontology
and epistemology into line with our overall scientific world-view.” [12, p. 78] While perhaps more
explicit in her motivations than most, Maddy’s desire to rule out non-material explanations for the
ontology of mathematics is throughout the literature.

However, all forms of transcendence are prone to the labels of “unscientific” or “pseudo-explanations.”
Simply put, every mathematician to have ever lived has been human. Books like Carl Sagan’s Con-
tact aside,19 there isn’t a shred of physical evidence that mathematicians exist who aren’t human.
So, to provide a transcendent explanation for the efficacy of labor performed exclusively through
the work and resolve of men and women is to devalue the work of mathematicians. If you will,
there are earthly explanations for all of mathematics thus making ethereal ontologies unnecessary.

So, if the known ontologies of mathematical objects and philosophies of mathematics are not sat-
isfactory, perhaps the synthesis of ideas that allows for discovery and invention betwixt periods of
refinement and exploration will allow us to move forward.

5 The Ontology of the Logic Loop

Thus far, we have been introduced to the Logic Loop model through historical case studies and in
the context of broad philosophical paradigms. It is time we see the philosophical underpinnings of
the Logic Loop. To develop this philosophy, let us unravel it through a brief mental simulation of
how we are typically brought to ask ourselves whether math is invented or discovered. The moment
we properly define mathematical objects and equip said objects with certain axioms, the magic of
mathematics unfolds. Results, properties, and in a sense new objects, seem to be immediately
generated. A rich mathematical land suddenly lays in front of us, delighting our mathematical
curiosities. As we further investigate, we find that different mathematical lands are intricately
connected (topology, algebra, etc.). Coupled with certain unreasonable successes of these objects
with regards to natural world applications, we are faced with an ontological dilemma; wondering
whether we are mathematical inventors or simply discovered these mathematical objects.

Faced with this ontological dilemma of mathematics, we seek to provide yet another ontological
perspective. We understand that more than enough has been written about the ontology of math-
ematics. As such, we are not innovating so much as compiling a narrative and synthesis of various
perspectives, and we have a profound sense of humility and gratitude towards the rich history of
the ontological debate. Without this history, the Logic Loop would not exist.

17This will be explained further in Section 5.7 where we discuss theological priority, but in brief, realism about
abstract objects establishes an uncreated, necessarily existing, eternal world apart from any concept of the divine.

18Mathematical Platonists are often called “realists.” However, this is not perfectly accurate. Some realists hold
that mathematical objects are concrete rather than abstract. So while all mathematical Platonists are mathematical
realists, there are some realists who aren’t Platonists.

19I was introduced to Sagan’s story through its 1997 film adaptation. In “Contact”, aliens reach out to Earth by
making their presence known through a series of prime numbers. Thus, in Sagan’s meta narrative, there definitely
are non-human mathematicians.
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Furthermore, why should we bring another perspective? Is there a need? Our motivation for this
narrative is to address various necessities of the Christian mathematician. We want an ontological
perspective or narrative that speaks to various concerns and necessities of a Christian mathemati-
cian: Ontological simplicity, intrinsic formality, applicational transcendence, extrinsic universality,
ongoing refinement, cultural awareness, and theological priority. Let us examine each of these in
detail and see how the Logic Loop addresses them.

5.1 Ontological Simplicity

Our ontology of mathematics should be simple. It should not require the invocation of a pla-
tonic realm, or some sort of vague description of the terms “existence” and “truth” as applied to
mathematical propositions. The game description provided in mathematical formalism20 as well as
through Maddy’s arealism21 helps us. That is, in the Logic Loop we need not assume realism and
the independent existence of abstract mathematical objects.

5.2 Intrinsic Formality

Instead, mathematical objects and axioms are like game pieces and rules in the game of math-
ematics. The view is that mathematical characters have no more meaning than the pieces on a
chessboard. [17, p. 144] That is, they are concepts. As concepts, they do not exist in a meta-
physically heavy sense as independent and eternal abstract objects. This means that we invent
mathematics much like we invent a game. After inventing the game, we play it and explore its
consistency. Is the game too trivial? Is the game full of contradictions? As we discover flaws,
undesirables, and untapped potential, we refine it towards a v2.0 invention, where our definitions
and axioms have been tweaked. Ergo, the loop continues. We provide more detail on refinement,
below.

5.3 Ongoing Refinement

Our conceptual framework allows for a philosophy of mathematical practice that is reflective of
the historical reality of mathematical endeavors. Math, as we see it today in texts and articles, is
the result of centuries of refinement. It is a process. We develop mathematics, and after explo-
ration of our creations, we discover mathematical consistencies, untapped potentials, and maybe
some undesirables. This leads to a refinement process that allows us to distill and clarify axioms,
definitions, theorems, and methods. As we have argued, historically the mathematical process is
much more organic than just writing definitions and then proving results. Nonetheless, this is the
impression our students get in the classroom. The rigorous mathematics we know today is the
result of a refining process. Take for example the publication of real analysis texts. Even as new
Real Analysis books are published, we find new approaches or ways of setting up or defining objects
and assuming axioms that enhance learning. Moreover, refinement is true to how students learn
new concepts. Often, students must first explore axioms and definitions in order to make sense of

20There is a lengthy explanation of mathematical formalism in [17, pp. 144–148].
21We keep with Maddy in choosing “arealism” over “the more usual term ‘anti-realism’ because it is most often

used for positions that rest on principled, often a priori, objections to realism. [Maddy’s] arealist is not against
mathematical entities any more than she is against unicorns; she just has no evidence for the existence of either.”
[12, p. 364]
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what is built upon them. Otherwise, they may end up learning proofs to misunderstood proposi-
tions. As students explore and discover, they may find a need to refine their own assumptions and
understanding.

Here is one example of refinement as a process from discovery to invention: Recently, one of the
authors was teaching an introduction to Real Analysis course to students. In the first weeks, the
course builds the real line by starting with a field and building further assumptions on said field.
After ordering the real line through Positivity Axioms, we then proceed to explore and discover
what our field looks like. We discover that our field has sets such as the natural numbers and that
this set through the very field axioms generates other sets such as integers and rational numbers.
But our exploration comes to a shocking conclusion as we discover that there is no real number
(as our ordered field currently stands) whose square is two. This leads to a necessary refinement:
the Completeness Axiom. By assuming the Completeness Axiom, we refine our previous set of real
numbers into a new invention: the completed real line. This process of exploration is a common
technique in introductory real analysis or advanced calculus.

Recently, a further example of the exploration and refinement processes was observed in the same
series of lectures. We had finished discussing the field axioms with the non-triviality assumption.
After briefly proving that the product of any number with the additive identity is zero, a stu-
dent proposed that the non-triviality assumption could be thrown away and obtained through the
remaining axioms and even wrote a mathematical proof to support his claim. The student was
exploring our field invention and decided to explore whether or not we could obtain non-triviality
from the other axioms. We proceeded as a group to explore the student’s proposed proof and to
carefully consider its assumptions. After some thought, we discovered that the student had simply
created a trivial field, made only of the additive identity (zero). Like past math explorers who asked
“What if?” about Euclid’s fifth postulate, we realized that the student’s field needed refinement
through the appropriately named non-triviality axiom. It was a simple though powerful learning
experience that revealed how mathematical learning and innovation occur.

5.4 Applicational Transcendence

Yet the ontological simplicity, intrinsic formality, and the refinement of our axioms and narrative
insufficiently account for the applicability of mathematics to the physical universe. Case in point
are the mental gymnastics nominalist naturalists undergo to explain the indispensability of fictional
mathematical objects in applications to the natural world. That is, if abstract mathematical fictions
are necessary in explaining the dynamics of physical phenomena, naturalism cannot provide an
adequate answer to Wigner’s unreasonable effectiveness of mathematics to the natural sciences.

The nominal naturalist position is overly simplistic, seemingly unable to address indispensability
arguments. As Einstein is attributed to have said, “Everything should be made as simple as possible,
but not simpler.” Incorporeal mathematical objects perfectly suited to a corporeal universe require
at least a deist position to explain this applicational transcendence. God designed the laws of
the universe mathematically. In this sense, while we retain an anti-Platonist position, we do not
subscribe to naturalism. Wigner’s dilemma is not a problem if we assume the existence of God.
Taking this a step farther, our ability to seemingly unlock the mathematical secrets of the universe
is rooted in our image-bearing qualities as the special creation of a personal God.
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5.5 Extrinsic Universality

Our Logic Loop should account for the extrinsic universality of mathematics. Previously, we stated
that universality has two related forms. The first is the discovery of properties or theorems in dif-
ferent times and places. The second is the appearance of special numbers across various disciplines.

Within the game analogy of our Logic Loop, the first form is addressed as follows: If we explore the
same or virtually identical games, we will find identical or similar strategies. Examples of this in the
world of playing cards occur frequently in games such as Rummy and Phase 10 that focus on runs
and sets. Another example from the world of playing cards is that similar strategies succeed in the
trick-trump card games Spades and Bridge. Similarly, we see what we call “Pascal’s Triangle” used
in ancient India (2nd century BC) with a binary system, Persia (10th century AD), and China
(11th century). Even in Europe, numerous mathematicians used Pascal’s triangle to calculate
the binomial coefficients prior to Pascal’s publication (17th century). Although in different eras,
regions, and even with different numbering systems, mathematicians have found similar strategies
for solving combinatorial games. 22

The second form of universality is addressed through God’s divine influence in our minds as image-
bearers. We practice mathematics in the Logic Loop as influenced by God’s perfect mathematical
mind. God builds mathematics in interconnected ways with axioms that show connections that are
unexpected to us. Since we are his image-bearers, we choose to build fields, groups, geometries,
etc. with axioms that mirror God’s mathematical practice. We then find repeated and unexpected
appearances of famous special numbers. While these appearances are surprising to us, they are
not surprising to God who knows the appropriate games and rules to build in order to reveal the
connections.

5.6 Cultural Awareness

Many mathematical practitioners work under the assumption that there is (and has been) only one
mathematics. While peripherally aware of its history, mathematics is thought of as monolithic and
the product of steady progress independent of context. But the Logic Loop includes an awareness
of the way mathematics has been influenced by its historical and cultural contexts.

While examples abound, here are two brief examples stemming from our first case study: calcu-
lus. Contemporary introductions to calculus begin with limits (including its precise delta-epsilon
definition) and only much later touch on power series. However, this masks that power series were
used heavily by Newton/Leibniz in the invention of the calculus while the careful use of limits was
the result of refinement and exploration over a century later. Power series can be traced back to
India. Its partner binomial theorem with which Newton manipulated series has roots in Persia
and elsewhere. This demonstrates how the math of invention/exploration can evolve substantially
through the refinement and discovery components of the loop.

Culture can have a positive or negative impact within the Logic Loop. A sad example comes from
the development of calculus in Europe in particular. As is well known, after just two letters, Newton
cut off all correspondence with Leibniz believing that his ideas had been stolen. Mathematicians
and scientists in England followed Newton’s lead in what has been called The Great Snub. As

22Another example: It does not surprise us that the Mayans had a number system that has a (mostly) consistent
base even though they used base 20, dots, lines, and shells where we use base 10 and the Hindu-Arabic characters.
We are both representing numbers and as such find similar strategies effective.
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a result, mathematics in England stagnated for a century whilst thriving on the continent. This
awareness of the role of context and culture in the Logic Loop of mathematics aligns with an
ontology of mathematicians simultaneously imago dei across time and place as well as broken,
prideful, and short-sighted.

5.7 Theological Priority

We give the Logic Loop theological priority by presupposing that our ontology must align with
orthodox theologies. In the book, Beyond the Control of God?: Six Views on The Problem of God
and Abstract Objects, Paul Gould explains the so-called problem of God and abstract objects. In
essence, Gould states that should God exist, and abstract objects exist (in our case, mathematical
objects), there is an inconsistent triad of premises. In order to avoid contradiction, one of the
premises in the following triad must be removed:

1. Abstract objects exist.

2. If abstract objects exist, they exist independently of God.

3. If abstract objects exist, they depend on God for their existence.

The first two premises are Platonist assumptions. The third is an assumption via the Aseity-
Sovereignty doctrine of God which holds that all things depend upon God, but God depends on
nothing. Scripture has various passages to support the Aseity-Sovereignty doctrine of God. For
example, consider Colossians 1, verse 16: “For by him all things were created, in heaven and on
earth, visible and invisible, whether thrones or dominions or rulers or authorities-all things were
created through him and for him.” (ESV)

Thus, if mathematical objects do exist and fall under the described “things” of this verse, they
would have been created by God. Of course, some may interpret the scope of “things” in this verse
to exclude abstract objects. For this reason, some may select to remove premise 3. Others may
choose to remove premise 2 thereby modifying Platonism. Given the lack of evidence of a platonic
realm, and given the metaphysical speculation required to sustain the co-existence of abstract
objects and God, we submit the simplest solution is to remove premise 1 by denying the existence
of abstract objects. This gives theological priority to God since we have no mathematical reason
to suspect the existence of abstract objects would necessarily depend on God’s existence.

Nevertheless, numerous mathematicians, including many Christian mathematicians, gravitate to-
wards Platonism. We should examine this trend. More generally, what in Platonism appeals to
mathematicians? We argue that two of the primary attractions of Platonism are:

1. The universality of mathematical content.

2. The objectivity of mathematical statements.

We have already addressed the first attraction and argued that the Logic Loop provides an expla-
nation for both forms of the universality of content. Regarding the desire for objectivity, the Logic
Loop reveals that objectivity is possible, but only within the parameters of selected axioms. As
Kline has argued, the objectivity of mathematics is not unshakeable. [9] Within the walls of selected
axioms, mathematical statements are objective due to the rules of logic applied to the selected ax-
ioms. Returning to the game analogy of the logic loop, the moves, strategies, and results of a game
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are objectively true, as permitted by the rules or axioms of the mathematical game. Moreover, the
objectivity of mathematical statements does not necessitate an ontological commitment. When a
chess position is equivalent to a checkmate, the other player has objectively lost. This does not
mean that the rook, pawn, bishops, etc. are real game pieces nor is the fate of the defeated king
metaphysically real in some platonic realm. But the statement is objectively true.

It seems that Christians have historically been drawn to Platonism via a modified version known
as Christian Platonism.23 This modified version views mathematical objects as ideas in the mind
of God. However, this quasi-Platonism is not problematic with the Aseity-Sovereignty doctrine of
God since it seems to remove the independence of mathematical objects by categorizing these as
thoughts in the mind of God. However, said position does leave some concerning loose ends that
deserve attention. For one, if mathematical objects are ideas in the mind of God, are we placing
the objectivity of mathematical statements on God’s mind? Is 2+2=4 true because God thought
so? Furthermore, are divine ideas metaphysically existing objects? If so, are they abstract or are
they concrete? If the latter, what is the nature of concrete divine ideas? While these questions
are not deal-breakers24, they do reveal that the Christian mathematician must think deeply about
what is meant when they assert the existence of mathematical objects in relation to God. In the
present paper, while both authors differ on some of these questions, both authors agree that an
easy solution to the problem of God and abstract objects is to assume mathematical objects do
not exist as abstract objects. Thus we agree on the Logic Loop which seems to allow for either a
Fictionalist position or for a concrete realism position.25

While it may seem that the present ontological discussion favors formalism over concrete realism,
a final note on the ontology working behind the scene of the Logic Loop may help balance this
impression. While the authors have used the so-called Logic Loop as a blanket term for an ontology
and for the history of invention and discovery, the reality is that the Logic Loop refers primarily
to the way humans have practiced mathematics. But does God experience this so-called Loop?
Theologically, one should assume God does not discover flawed game dynamics in need of refine-
ment. Moreover, God does not discover any game dynamics. His first mathematical invention is
perfect and known to God to the fullest extent. God invents perfect games and is not surprised by
the mathematical discoveries within these games. Furthermore, when did God invent these games?
Did he not know he would eventually invent the games and what they would look like? Thus, these
perfect games have always been in God’s mind. It is here where concrete realism can help us.

As this concrete realism may seem to be a form of Platonism, the reader should be reminded that
traditional Platonism assumes the existence of abstract objects instead of concrete objects. In this
sense, the authors invite the reader to consider a divine quasi-formalist ontology in which God’s
mathematical ideas are either abstract concepts in the mind of God that do not metaphysically
exist or concrete concepts that exist in the mind of God.

6 Mathematics as a Habit of Grace

Even if the existence of abstract mathematical objects is sacrificed, transcendence remains via the
unreasonable effectiveness of mathematics in the natural sciences. Indeed, the naturalist finds it
unreasonable, but the theist embraces the fascination of a Divine designer that fashions the fabric

23For example, [1, pp. 204ff]
24These issues are discussed at length in Gould.
25See Gould on concrete realism.
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and behavior of the universe mathematically. As such, applicational transcendence is a catalyst of
awe and the worship of God. While presumptuous to claim that the Apostle Paul had mathematical
objects in mind, one could argue that mathematical objects are included in Romans 1:20:

For his invisible attributes, namely, his eternal power and divine nature, have been clearly perceived,
ever since the creation of the world, in the things that have been made. So they are without excuse.

Paul seems to suggest that the magnificence of the created universe reveals God’s eternal power
and divine nature. While Paul wasn’t thinking of the mathematical structure of the universe,
this passage reveals that the more we study and understand the created order, the more we are
able to perceive God’s aforementioned invisible attributes. Mathematics allows us to perceive his
invisible attributes as we continue to unravel the mathematical nature of our universe. Therefore, if
glorifying God is the chief aim of humanity as image-bearers, the practice of mathematics becomes
a habit of devotion or discipline in the form of intentional mathematics. The pursuit of pure
mathematics invites us to mimic the Divine creativity that forges a created order. We are to think
up mathematical possibilities as a manifestation of our co-creator status as image bearers. We
explore these inventions to see whether what we have fashioned is deemed good, much like God
sees that what He has made is good in Genesis 1.

If the practice of pure mathematics can be a habit of worship of the Godhead, the application of
mathematics can be a form of neighbor love. The practice of applied mathematics can become a
service to a rapidly changing world in need of new solutions. As God redeems the world from the
power of sin and death, we act as His hands and feet as we compassionately apply mathematics
in fresh ways to understand and heal a broken world. This is especially true in a rapidly changing
world that consistently generates new problems. While one could indeed argue that all problem-
solving is worthy of being labeled “service,” we take said service a step further by looking to
apply mathematics to problems that have been neglected or ignored. That is, we ask “what world
problems lack a mathematical perspective and solution?” The Christian applied mathematician
thus emulates the good Samaritan as she steps out of the comfort zone for the sake of serving the
destitute. In this way, our application of mathematics emulates Jesus.

But the practice of mathematics is not inherently a habit of grace. Indeed, some may apply
mathematics out of self-service and not out of compassion to others. Furthermore, idolatry and
hubris can creep into the pure mathematician’s heart. Blaise Pascal gave us such a warning when
he stated that science can satisfy, “a greed or lust for learning, a profligate appetite for knowledge.”
To Pascal, “such a study of science springs from a priori concern for self as the center of things
rather than a concern for seeking out, amid all surrounding natural phenomena, the presence of
God and His glory.” [9, p. 46]

It is worth clarifying that one can and should enjoy mathematics for itself. Moreover, to complete
this joy and avoid idolatry of self and mathematics, one should see the enjoyment of mathematics as
a means to an ultimate end that is not mathematics itself. The ultimate end is the love of God and
neighbor. While it can be challenging to remain aware of God within the practice of mathematics,
we should seek to cultivate this awareness throughout mathematical endeavors. The payout of this
effort is a renewed mind that does not compartmentalize faith from our disciplines but instead can
see cruciform beauty within our mathematical liturgy.
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7 Choose your Ontology

Our proposed Logic Loop was constructed from the seven priorities of the Christian mathematician
that we previously addressed. While the Logic Loop does step away from Platonism, it allows
room for two distinct ontological commitments. On one hand, a nominalist position fits well
within the Logic Loop since we argue mathematics can still be indispensable without attributing
existence to mathematical objects, vis a vis a creator. On the other hand, one can subscribe to
a divine conceptualist framework where mathematical objects exist as ideas in the mind of God.
Per William Lane Craig, this would constitute a different ontology altogether than mathematicians
are used to. Specifically, he would say that these conceptual objects are concrete (as opposed to
abstract). At present the authors are still seeking to understand this form of concrete realism. But
as this demonstrates, there are multiple ontologies (outside of Platonism) of mathematics that also
seem to satisfy the Aseity-Sovereignty doctrine which was one of our concerns. Thus, one author
takes an anti-realist position that still sees mathematics as a game but knows the limitations of
formalism, while another author is more akin to a conceptualist position that sees mathematical
objects as concrete divine ideas. At the present time, we are not tasked with distinguishing between
concrete and abstract objects and leave that for a subsequent paper.

The authors of the present paper have two different positions as described above. This was both
necessary and intentional as this joint effort came to a conclusion. For one, the authors understand
that we are adding just a small grain of sand to the ongoing conversation of the ontology of
mathematics. Humbly, we recognize that we can’t propose an all-satisfying answer, especially
within the grand and rich history of ontological discussions. Moreover, we have simply assembled
an ontology that honors the legacy of the philosophy of mathematics. Rather than solve the
ontology of mathematics, we hope our proposed Logic Loop would stimulate thought and dialogue
the way the Church represents a diversity and unity of members under the banner of faith in Christ.
Just as we can have liberty and charity in the plenitude of faith beyond the creeds, there must be
freedom and grace in the philosophy of mathematics.
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Abstract
Since employers value creativity in the rapidly changing twenty-first century, creativity has be-
come an intentionally incorporated and named part of the higher education curriculum through
courses, programs, and faculty titles. Further, as Christians, creativity connects to our identity
as image bearers of God the Creator and our mission as his children. Although as mathemati-
cians we may view ourselves as highly creative, others fail to understand the creative aspects
of our field and the role mathematics can play in developing students’ creative skills. Due to
the current importance of creativity, we suggest mathematics educators learn the terminology
of creativity experts so that we can prepare our students to transfer their creative practices to
other non-mathematical contexts and to effectively communicate their creative mathematical
experiences to prospective employers. We provide an example mapping between creativity as
described in Don Perini’s text Emerge and math instructional practices.

1 Introduction

Creativity is among the soft skills currently in demand by the employers of college graduates.
An October 2020 survey of 496 employers (executives and hiring managers) by the Association of
American Colleges and Universities (AACU) found that for creative thinking, and each of thirteen
other essential learning outcomes of a liberal education, at least 90% of employers considered each
to be somewhat important, including more than 50% who considered each very important for
success in the workforce [3, p. 6]. Further, employers under age forty were significantly more likely
than employers fifty and above to consider creative thinking as very important (60% to 43%) [3,
p. 26]. In a chapter aptly titled “An Education that Lasts: Thinking Creatively and Globally,”
Ostrander explains that in the twenty-first century we have shifted from the Information Age, in
which white-collar workers produced and processed information, to the Conceptual Age; due to
increased automation and outsourcing:

. . . creators, designers, and collaborators command the highest value. The right brain—
the part that synthesizes information, sees the big picture, envisions new scenarios, and
empathizes with others—is as essential to the modern economy as the left brain. Writing
code for an iPhone is one thing; but it takes a different sort of mind to envision the need
for and value of an iPhone in the first place, and to design one that has the mysterious
quality of ‘feeling right’ to the user. Creativity, not just computation, is the important
trait of the future [8, pp. 144-146].

Technologists, scholars, practitioners, strategic thinkers, and education leaders canvassed by the
Pew Research Center in 2016 suggested workers nurture creativity as one of the “unique human
skills that artificial intelligence (AI) and machines seem unable to replicate” [10, p. 4].
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Higher education has picked up the creativity mantra in curriculum and faculty titles. For exam-
ple, the panelists at a 2022 The Chronicle of Higher Education forum on “Lessons on Creativity
and Communication” included a professor of creativity and innovation, a professor in education
innovations, and a vice provost for creative inquiry [11]. Our own institution requires a sophomore
seminar titled “Courage, Creativity, and Calling” and includes creativity in two of the thirteen
learning outcomes of our Foundations Program: students will “integrate, synthesize, and apply
knowledge and information creatively” and students will “engage the created world and human
culture with curiosity and creativity” [12, p. 62]. The AACU emphasizes the importance of vo-
cabulary in discussing workforce preparation: “employers and educators are largely in agreement
when it comes to the value of a contemporary liberal education—provided it is described using
language that is common and accessible to both stakeholder groups” [3, p. iii]. Suggested practical
action steps from the AACU’s employment research include that educators should “equip students
to name and reflect upon the skills that matter” and should “make mindsets and aptitudes [such
as curiosity and persistence] an explicit part of learning to help students better understand what
they can contribute as professionals” [3, p. 32]. As educators whose mission includes preparing stu-
dents for professional life after college, the current cultural significance of creativity should inspire
us to increase our familiarity with the discussions and research on creativity so that we may be
intentional in communicating with our students and in incorporating creativity into our classrooms.

In his text on creativity Emerge, Don Perini, Professor of Creativity and Innovation at Cornerstone
University, defines creativity as “works that are both new and useful” [9, p. 15]. This definition
seems to include that action has been taken so that a finished product now exists interacting with
the world, that this product must be novel or original, and that this product must be of use to
effectively serve a purpose. “Creativity isn’t a genie in a bottle. It takes determination, process,
and good habits to come up with great results” [9, p. 11]. The good news, according to Perini and
other teachers of creativity, is that we each can learn and develop our practice of the habits and
processes that lead to the completion of creative works.

2 The Value of Creativity in Christianity
From a Christian perspective, the importance of creativity goes far beyond essential job skills,
connecting to our identity and purpose as human beings as described in Genesis:

So God created man in his own image, in the image of God he created him; male and
female he created them. And God blessed them. And God said to them, ‘Be fruitful
and multiply and fill the earth and subdue it, and have dominion over the fish of the sea
and over the birds of the heavens and over every living thing that moves on the earth’
(Gen. 1:27-28, ESV).

The cultural mandate of verse twenty-eight serves as the “instructional manual” for the “play-
ground” of Earth that God has given humankind for our enjoyment and flourishing [9, p. 24]. The
concept of imago Dei and the cultural mandate in these two verses establish the inherent worth and
significance of each human being, how we are different from the rest of creation, and our unique
mission; Perini describes who each one of us really is:

I am much more than a bunch of cells. I am God’s image bearer, sharing in God’s rule
and administration over the earth, and I have been given a mandate to harness the
natural world and develop the social world. God has given me a unique set of talents
to assist my efforts in ruling the world, fulfilling the mandate, and making culture [9,
p. 37].
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The focus of God during the full arc of the Biblical narrative, according to Fujimura, is on creating:
“the consummation of God’s plan as it unfolds in the Bible is not a utilitarian restoration but an
imaginative New Creation,” for the imagery of Revelation is a city, new Jerusalem, and not a return
to the garden of Eden [4, pp. 29-30]. “Restoring a broken world is a noble goal, and yet biblical
promises go further than even that ideal” to a “generative, expansive promise of the New” [4, pp.
22-23].

The cultural mandate calls us to participate in God’s plan for new creation. Our activities of
justice, beauty, and evangelism, according to Wright, “are not simply ways of making the present
life a little less beastly, a little more bearable, until the day when we leave it behind altogether. . .
They are part of what we may call building for God’s kingdom” [13, p. 193]. The promise of 1
Corinthians 15:58 is that our labor is not in vain:

God’s recreation of his wonderful world, which began with the resurrection of Jesus and
continues mysteriously as God’s people live in the risen Christ and in the power of his
Spirit means that what we do in Christ and by the Spirit in the present is not wasted.
It will last all the way into God’s new world. In fact, it will be enhanced there [13, p.
208].

We can only imagine how this will work. Fujimura tells a parable of a child building a sandcastle
washed away by high tide. The child’s father, an architect, chooses to build a real castle based on
the child’s work, possibly even transforming the sand into the new reality of a permanent building.
One lesson from this parable: “God takes far more seriously than we do what we make, even in
‘inconsequential play,’ and everyday realities can be enduring materials through which the New
Creation is to be made” [4, p. 36].

When our creative endeavors glorify God, we are bringing his kingdom and reflecting glimpses of
new creation, but Perini warns that due to sin our behavior tends toward the immoral:

We believe the best way to achieve personal worth is by gaining significance and ob-
taining security. . . Your own efforts to find personal worth are always temporary. They
give the illusion that significance and security can be found through fame and fortune
[9, p. 26].

We are tempted to be like the builders at Babel: “Then they said, ‘Come, let us build ourselves
a city and a tower with its top in the heavens, and let us make a name for ourselves, lest we
be dispersed over the face of the whole earth’”[Gen. 11:4]. These attempts to be God, through
self-aggrandizement and trying to establish our own identities, lead to “inevitable despair at our
constant failure” [13, p. 114]. Instead we should embrace ourselves as creatures remembering that
we “are significant, as image bearers, and secure, because of [God’s] unconditional love” [9, p. 26].

The “creatives” who imagine innovative solutions do important work and are highly prized, but the
risk is that this comes at the cost of demeaning others. The work of creatives alone is not sufficient:
for example, project managers shepherd ideas to implementation, and there would be no workplace
without the service staff completing tasks viewed as menial. As we experienced during the 2020
pandemic, the formerly invisible grocery store clerks, truck drivers, and sanitation personnel became
essential. Christians are called to value the contributions of each: “But God has so composed the
body, giving greater honor to the part that lacked it, that there may be no division in the body,
but that the members may have the same care for one another” [1 Cor. 12:24b-25]. While we
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celebrate unique talents, our focus should be on glorifying God through the success of the whole
and the inherent worth of each member. Brent Waters, in discussing his book Common Callings
and Ordinary Virtues, said that we should not expect on judgement day to be held accountable for
being interesting but instead for being faithful stewards as required in 1 Corinthians 4:2 [6].

As always, we should be cautious of the ingrained cultural perspectives we have inherited. New is
not always better. Wright argues that Western culture’s modernist myth of progress, that human
improvement is unlimited and humankind is inevitably marching toward utopia, fails to deal with
evil because it did not stop the great evils of the twentieth century, it cannot address the moral
issue of making right the evil of the past, and it underestimates the nature and power of evil [13,
pp. 84-87]. A presumption of natural progress forgets the nature of humankind and confuses human
power for the fruit of transformation by the Spirit: “For I know that nothing good dwells in me,
that is, in my flesh. For I have the desire to do what is right, but not the ability to carry it out”
[Rom. 7:18]. Warning against the overemphasis of usefulness, Fujimura argues that the “bottom-
line utilitarian pragmatism” passed down since the Industrial Revolution leads us to value, even
as we view ourselves and humanity, “only what is most efficient, what is practical and industrial,”
whereas “the essence of humanity under God is not just utility and practical applications; the
essence of humanity may be in what we deem to be ‘use-less’ . . . but essential,” including the
works of mercy and beauty he believes contribute to New Creation [4, pp. 18-19]. The Christian
understanding of new and useful in creative work should be shaped by the characteristics named in
Philippians 4:8: true, honorable, just, pure, lovely, commendable, excellent, and worthy of praise.

As Christians, these warnings and corrections should lead us to acknowledge that either our defini-
tion of creativity is somewhat different than employers and academics or that our understanding of
the cultural mandate is more expansive than creativity as defined, or both. Those glorifying God
through faithful service in the ordinary, often anonymously, are building for New Creation, too.
And yet, these steadfast servants also benefit from an imagination to look ahead to New Creation
and should steward their God-given talents through development. Further, the students called
to our college classrooms are likely to pursue twenty-first century careers that require innovation.
Thus, using the cultural definition of creativity as works that are both new and useful is helpful, as
long as it is accompanied by discernment to ensure the glorification of God in our endeavors and
by care as we invoke the cultural mandate to motivate creativity curriculum.

3 Math’s Public Relations Problem

Creativity experts suggest studying the habits of the successful to discern processes that lead to
accomplishment [9, pp. 141]. Based on a survey of top modern mathematicians in 2002, combined
with historical quotes, the ingredients for mathematical discovery include hard work, experimen-
tation, insight, tenacity, technical skill, mistakes, intuition, and good problems: “Creativity and
mathematics may be an oxymoron to the non-mathematical but it certainly isn’t to productive
mathematicians” [2, p. xi]. But then, discussions of creativity at this highest level of math are likely
quite esoteric for the average non-mathematician who has never been asked and cannot imagine
being able to uncover a new mathematical discovery. Even at the undergraduate level, many of the
problems students encounter have a solution already known to the professor so that the students’
work seems to not satisfy the requirement of being new in the definition creativity. Pólya, from his
1945 text How to Solve It, speaks to how even these problems connect to mathematical creativity:

A great discovery solves a great problem, but there is a grain of discovery in the solution
of any problem. Your problem may be modest; but if it challenges your curiosity and
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brings into play your inventive faculties and if you solve it by your own means, you may
experience the tension and enjoy the triumph of discovery [2, p. 108].

Since this paper discusses the preparation for undergraduate students for professions after college,
we will focus on this type of creativity found in the everyday work of college math classes.

Unfortunately, the mathematical experience of too many students in the United States has been
memorization rather than conceptual understanding and thus, beyond college math departments,
colleagues and prospective employers for our students may not have experienced the triumph of
discovery Pólya describes. Based on their own negative experiences, they may confuse a greater
memory for students’ actual inventiveness. On the 2012 Programme for International Student As-
sessment, a problem-solving test for fifteen-year-olds, American students came in last or close to
last; students whose approach to learning focused on memorization, and countries including the
United States with high numbers of memorizers, were lower achieving than students who used a
relational approach (connecting new ideas to what they already knew) or a self-management ap-
proach (identifying what they knew and what they needed to learn), and the countries with high
numbers of these students [1, pp. 159-161]. In the hopes of improving math education and foster-
ing a broader appreciation of the creativity in mathematics within society, it is encouraging that
the National Council of Teachers of Mathematics includes among the required teaching practices
many items that challenge students to go beyond memorization to deeper and more flexible un-
derstanding of material that allows creativity: promote reasoning and problem solving, connect
mathematical representations, build procedural fluency from conceptual understanding, support
productive struggle, and elicit evidence of student thinking [7, p. 3].

Additionally, the grain of discovery in solutions is often hidden because the final draft of written
mathematics is the communication of an argument, not the record of the solution process:

Mathematical publications obscure mathematical creativity. Journal articles, books,
and monographs do not present math in action, but show the work in finished form,
with the footsteps of discovery (invention) carefully erased. But mathematics rarely, if
ever, emerges in finished form. The logicality of polished mathematics differs enormously
from the more mysterious process of mathematical discovery. The more artful aspects
of mathematics are elusive.

Although this may be describing professional mathematics, we teach our students to do the same.
Homework submissions often require students to submit rewritten work, including only the neces-
sary information. An example may be given to demonstrate a pattern but the longer list of examples
used to search for a pattern do not make the final draft. For proofs of limits or series convergence,
the constant multiple of epsilon or of the comparison series seems to appear at random since the
side work to find the correct constant satisfying the required relationships has been scrapped from
the final proof. Pólya described mathematics as having two faces: in finished form math is purely
demonstrative, but the creative work of mathematics is like that of experimental sciences involving
observation, analogy, conjectural generalizations, and mere guesses [2, p. 109]. While learning for-
mal communication of mathematics is important, we should also require our students to practice
explaining their reasoning process for they may be called to guide others to understanding in future
professional situations and be required to testify to their own problem-solving inventiveness.

Society recognizes the importance of applied mathematics, but abstract mathematics often seems
irrelevant to non-mathematicians so that they may see it as failing to meet the usefulness criterion
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of the definition of creativity. For part of the twentieth century the mathematics community
encouraged this view: through the emphasis on pure mathematics, mathematicians “tended to
isolate themselves from practical affairs” and claimed irrelevance to the broader culture to ignore
responsibility for the negative consequences of the mathematization of culture [5, p. 219]. To change
this perception, as a community we should continue to share with our students and more broadly
the reasons we value mathematics, whether that is guiding others to see the beauty of this part
of God’s good creation, celebrating the surprising power of mathematics to help us understand
our world, or the ways in which mathematical exploration can develop the skills, mindsets, and
aptitudes that are in demand.

4 Creative Habits in the Classroom

Perini’s philosophy is that everyone can be creative: since highly successful people are not simply
born that way, we can learn and follow their habits to creative achievement [9, p. 12-13].

God has given humans a mission, a playground, and talents. Our talents need catalysts
that enable a new entity to emerge in order for culture-making (Creative Emergence)
to occur. These catalysts are our creative habits [9, p. 39-40].

Practicing creative habits develops our God-given talents, increasing the effectiveness of our talents
and, hence, the likelihood of the emergence of new and useful work [9, p. 32]. Not meant to be an
exhaustive list, Perini identifies nine habits he discusses in detail and several others he mentions
in passing. We may find some more consistent with our classrooms than others. Our hope is that
by mapping our activities to Perini’s creative habits, our students are better able to share the
creative habits they could implement in other contexts because they have regularly practiced them
to build solutions to problems, in particular solutions to the novel-to-the-student problems where
the complete path to the answer is not immediately clear.

One habit is making habits: “Enthusiasm, dreams, and novelty will only motivate us in the short
run. What we need are the habits that keep up moving forward when we lose that feeling of
grandeur. What we need is something to activate us when we want to quit ” [9, p. 109]. Perini
includes several steps in habit formation: creating triggers to start, rewards, accountability, and
repetition. Mathematics would be easier to teach if it merely required fact transfer, process memo-
rization, and easy-to-find solutions. Instead, math instructors often create strong daily and weekly
rhythms with problem-solving an integral part of each class and assignment, requiring students to
engage even on the days they do not feel particularly inspired. The external structure compels
students to participate in the habit formation cycle, establishing group work patterns and triggers
to start homework. Hopefully, students experience the satisfaction of finishing difficult problems.
Of course, just as habit formation is an act of will founded on the belief that the new habit is good,
right, and in our best interest [9, p. 114], persistence develops when students buy-in to the benefits
of regular productive struggle.

Possibly more than the other habits and compared to other fields, mathematical training strength-
ens the habit of ideation, the generation of ideas. Perini’s suggestions to generate ideas include
getting started, ensuring we capture moments of inspiration, and allowing the work to marinate.
A math instructor’s response to still students, closed mouths, and blank papers is often to tell stu-
dents to simply start, reminding them that, as with the idea for any new and useful work, solutions
to complicated problems “rarely come to us whole and complete” [9, p. 58]. We may teach students
to identify the knowns and the question, to review other problems looking for an idea to imitate,
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and to take a first deductive step by connecting the problem to previous knowledge. We encourage
them to continue down a path until solution or dead end, for even an unsuccessful argument may
provide pieces that when rearranged, as with a puzzle, reveal the answer. We suggest students write
down all their ideas until they figure out which are relevant, since seeing two ideas listed together
may spark progress or a fact may be waiting ready for insertion later in the problem solution. On
homework, we send students away, after a nudge in the right direction, to incubate and hopefully
to return to the problem with a new perspective. The most successful problem-solvers are disciples
of Thomas Edison’s perspective: “I have not failed, I’ve just found 10,000 ways that won’t work”
and “The most certain way to succeed is always to try just one more time” [9, p. 59].

Practicing the habit of mastery through 10,000 hours of practice, practicing with a purpose, and
integrating other knowledge leads to talent development through a progression of developing an
interest, honing technical skills, and finally mastery and artistry [9, pp. 84-85]. Artistry may be
beyond the scope of a course, but well-designed curriculum does include a purposeful progression
that if made explicit for students can give them a transferable model for learning. For example,
work for a section may start with basic skill exercises, but then problems progress from typical
questions and interpretations to novel issues requiring a synthesis of earlier work. Next, we require
students to complete problems with multi-parts, that benefit from the greater problem-solving
abilities of a group over any individual, and that require a discussion of process or an expression of
conceptual understanding. Eventually we may challenge students with open-ended problems. Not
only the tasks but the ordering of the tasks lead to a more complete understanding as learning
spirals, revisiting earlier topics to dive deeper and connecting them to new material. Further,
as students progress we challenge them to generalize from specific examples and contexts to the
characteristics and properties of underlying abstract concepts.

Perini’s emphasis with the habit of simplicity is reducing physical and behavioral clutter, including
removing unimportant tasks so that there is space for creativity. Although the space and time
affected is narrower, we teach our students techniques that reduce distractions and make space for
the essential ideas leading to a solution. Some of these techniques focus on the physical page, such
as copying ideas onto a single sheet of paper instead of continuing to reference the book or refocusing
on the central path by finding a clean board or a fresh sheet, as testified by the mathematician’s
ever-present notebook and stack of scrap paper. But simplicity also inspires translating from verbal
descriptions to symbols or diagrams, so that we can hold in view more pieces of the problem and
see the connections between them, and inspires starting with small or simpler examples to build
up to the given problem, allowing us to identify the key properties and to test hypotheses.

The creative habit of truth replaces lies with healthy scripts. The emphasis within the mathematical
community on growth mindset demonstrates a commitment to shift student-thinking, replacing false
scripts on potential both through direct discussion and by incorporating policies like mastery-based
grading that allow for differently-paced growth. Sharing our own experiences of mathematical
struggle normalizes development: in our department we tell our students a common story that
our undergraduate course which introduced proofs seemed harder than more advanced courses, as
learning to write proofs and to evaluate the validity of an argument—particularly within our own
proofs—took practice. Similarly, the habit of messiness focuses on learning from failure. “The fear
of failure paralyzes us. It keeps us from taking those first few steps, from experimenting with ideas,
or from finishing our creative endeavors” [9, p. 99]. Instead, we hope students learn to see errors
as a step in the process to a solution and thus to take risks. Further, as required solutions progress
from answers to arguments, students increasingly benefit from messy scrap work that sketches key
points or from rewriting messy first drafts.
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Perini’s vision of a village includes encouragers, mentors, consultants, and collaborators who can
provide both praise and criticism: “If we only hear praise, we will never receive what we need to do
our careers and endeavors well. If we only hear criticism, we are likely to give up and quit” [9, p. 87].
Mathematicians are quick to name the benefits of collaborating with others, our own histories—even
from elementary school—filled with fond memories of assignments with friends, comparing answers
and helping each other when we got stuck. Individuals within the group notice different points,
ask different questions, and remember different facts; the synthesis of these varying perspectives
often leads the group to accomplish more than any one individual member could complete alone.
Talking through an idea with others helps to clarify an explanation or reveal a logical gap. In
math, collaboration is usually encouraged, often rewarded, and sometimes required. Group work
during class makes space for the instructor to engage regularly in small group and even individual
mentoring. The instructor can catch and correct errors in understanding early so that students can
make additional progress outside of class, but it also provides an opportunity to coach students
through the problem-solving process. As students’ skills develop, assistance can often progress from
problem-specific hints to more generic questions such as “What are we trying to find?” and “What
are we given?” and then pointing out that they can be their own coaches since these questions
do not require knowledge of the solution. One quality of great math teachers is the ability to
verbalize their thought process and to help students to describe their own. Math can also be a
good subject for learning to accept criticism since it may feel less personal: when the emphasis is
placed on providing a valid proof, a good-faith critique is not of your opinion, interpretation, or
viewpoint. It is instead is a question of the sufficiency of your argument and early feedback gives
you an opportunity to fill the gaps.

Our habitat, including colors and sounds, influence our thinking. In math, we often discuss space
as a way to increase collaboration during group work. Whether it is sitting students around a table
instead of in rows or having students group around a whiteboard or giant notepad, the bringing
together of multiple perspectives can lead a team to piece together a solution that no one individual
could solve alone. Background music ensures that no one must speak into silence. Occasionally,
disrupting the routine by first disrupting the space re-energizes collaboration. By forcing students
to write on a large sheet of paper on the table in front of them instead of their own notebooks,
the process of discovering a solution may become less linear with the writing working out from
the center; their teammates’ work appearing sideways or upside down may compel them to move
themselves or the paper changing their engagement with the work and each other. Even changing
the sizes of the teams for a day can shift the conversation structures. It is also natural to inquire
about students’ habitat and village habits outside the classroom to see what choices they make on
their own.

Perini’s final habit is usefulness. He contrasts what we should be, good stewards of our God-given
talents to help humanity move closer to God, to the warning to the Laodiceans of spiritual use-
lessness in the book of Revelation. He warns us of three current cultural influences (consumerism,
entertainment, and technology) that often distract us from creative endeavors [9, p. 116]. Con-
sumerism encourages us to satisfy our desires through the shortcut of buying happiness. The
centrality of entertainment allows us to escape the hard things; placing our appetite before pur-
pose, we forgo the sense of meaning we get from work and the persistence we develop from pressing
on amidst difficulty. Technology is a powerful tool, but when its use is out of balance we can
trade reality for living in the virtual world and satisfy our desire for new things through virtual
engagement. Technology is useful and powerful in math as well, allowing us to check our work or to
calculate answers to questions that are difficult or impossible to do by hand, such as finding zeros
of functions or estimating definite integrals for functions without an elementary antiderivative. But
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to ensure that students develop fluency in the mathematical concepts, we explicitly establish ac-
ceptable uses of technology. For example, in calculus students may be allowed to use their graphing
calculators to find the zeros of function and the sign of the output, but not to determine the intervals
where the function is increasing or the concavity of the function. Instead, they must demonstrate
their understanding of the relationship of first and second derivatives to these characteristics of the
function. Because the goal of the work is not merely to find the correct answer, we need to discuss
the proper use of technology to support our primary goal of learning. Recognizing the need for
and then implementing boundaries in line with our priorities is important for stewarding any of
our talents.

Good mathematics instruction involves explicit sharing of the thought process for finding solutions
to difficult problems and requires intentionality in designing activities and an environment where
students can develop problem-solving skills. Practicing creative habits in mathematics classrooms
not only facilitates students’ discovery of problem solutions, but can also develop habits and skills
transferable to other contexts. In the twenty-first century, creativity is an important skill required
for the Conceptual Age careers of college graduates. Further, Christians are called to participate
in building for New Creation in all our vocational settings. We hope that studying the research
of creativity experts like Perini will give educators and students additional language for discussing
creativity within mathematics courses and then communicating these experiences, skills, and habits
in a manner that is more accessible to non-mathematicians.
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Abstract

The COVID-19 pandemic is one of the most unexpected global challenges of the early 21st
century. It has been devastating to healthcare systems and provided unprecedented difficulties
for educators worldwide as on-ground classes were suddenly transitioned online. In addition to
navigating an unknown virus, educators also faced the challenge of determining how to continue
to teach and assess students during this new normal. In this paper, we will share several
assessment practices we used in online and hybrid courses. We will include lessons learned
from transitioning “traditional” assessments, group projects, alternative/mastery exams, and
oral exams to online and hybrid classes. We will also provide a comparison of student surveys
from pre- and post-March 2020, which include questions about test anxiety, growth mindset,
and student perceptions of learning mathematics.
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1 Introduction and Literature Review

The COVID-19 pandemic has been one of the most difficult global challenges of the twenty-first
century. It has been devastating to healthcare systems and provided unprecedented challenges
to education systems worldwide as classes were suddenly and unexpectedly shifted online. In
addition to needing to adapt learning and testing strategies, this abrupt transition to online learning
and quarantining caused increased anxiety for students, faculty, and staff [1, 4, 30, 37, 43, 47].
To mitigate exposure to the virus while maintaining quality educational support for students,
many educators adopted new teaching strategies. However, not all initial implementations went as
anticipated, requiring updates and adaptions in the subsequent years. While many higher education
institutions are returning to pre-pandemic, generally in-person learning and instruction methods,
the educational strategies and lessons learned during the height of the pandemic should not be
forgotten nor their practices ended. In this paper, we will highlight some of the lessons learned as
well as intentional practices that could continue to be incorporated moving forward.

With the unexpected transition of courses to online learning, students and teachers faced numerous
additional stressors [37]. Fear of the unknown, concern for not only their own health and well-being,
but also that of their family and students, and adjustment to new classroom expectations while
online were only a few of the worries arising from the pandemic. New research [13, 28, 29] reports
that levels of depression and anxiety in students increased as the pandemic continued. Mendoza
et al. [37] found that university mathematics students reported high levels of anxiety from March
through July 2020 using the Inventory of Anxiety Situations and Responses-ISRA-B. Debowska
et al. [13] found that female students reported higher levels of depression, anxiety, and stress,
but noted that previous research [21, 36] has shown that women generally report higher levels of
depression and anxiety.

Even before the onset of the COVID-19 pandemic, many instructors attempted to counteract math-
ematics anxiety by encouraging students to adopt a growth mindset. Moreover, instructors have
created means to allow students to learn new ideas more deeply using a family of assessment models
commonly referred to as mastery grading, tiered grading, proficiency-based grading, or competency-
based grading [3, 10, 18, 23]. In the past, mastery grading has been used as an umbrella term for
multiple grading for growth techniques, but there has been movement away from this term [46].
Since mastery grading was the term used during the time of this study, the authors have decided
to use this phrase, but recognize its limitations as discussed in [46].

Campbell et al. [8] define a mastery grading scheme as any grading system that does the following:

1. Provides students with a clear list of learning objectives and bases course grades on how many
of these objectives are met;

2. Grades student work based on mastery rather than according to points and provides feedback
by learning objective instead of by assignment; and

3. Determines grades by whether students demonstrate learning eventually, rather than at any
particular moment in time, usually by providing students multiple opportunities to demon-
strate their learning.

Although there are many ways to implement mastery grading schemes, the grading method dis-
cussed in Section 2 divides course learning objectives into a list of discretely assessable concepts,
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and student work is graded according to objective. Generally, course grades are assigned based on
the number of course objectives students have demonstrated as being learned by the conclusion of
the course. Either the number of mastered concepts is converted to a percentage and used as a
portion of the final course grade computed via a weighted average or each grade level may require
a certain number of mastered concepts [3, 23]. Similar grading schemes are also being adopted in
other areas of academia including chemistry, engineering, nursing, and physics [5, 9, 16, 22, 35].

Many mastery grading practitioners in mathematics education have reported that mastery grading
results in lower stress and anxiety for students [19, 24, 25, 31, 32, 34, 45]. Because students have
multiple opportunities to demonstrate their understanding of concepts in mastery grading, these
assessments have lower stakes in general [2, 24, 33]. Lower stakes assessments, in turn, have been
shown to help alleviate test anxiety [50]. Thus, these alternative assessment techniques can benefit
students in a myriad of ways.

The unexpected and rapid move to remote learning provided an opportunity to analyze a cross
section of mathematics courses on the impact of mastery grading approaches, especially as related
to student anxiety during the first few years of the COVID-19 pandemic. Since we have already
seen some evidence in support of these alternate grading methods in reducing test anxiety, this
study was intended to investigate how alternate grading methods would fare with the additional
anxiety added by an unexpected global pandemic.

In Section 2, we discuss the changes we made to our pedagogy after we shifted online and how
these changes could continue to be implemented as we return to in-person classes. Specifically, we
mention technological changes, assessment changes, alternative assessment techniques, and resulting
challenges. Then, in Section 3, we describe the design of our surveys used to compare mastery
graded and traditional courses as well as the specific courses we examined while the results are
broken down in Section 4. Finally, the implications of our results are discussed in Section 5, with
concluding remarks in Section 6. Sections 7, 8, and 9 contain rubrics and surveys as additional
materials.

2 Pedagogical Changes

In response to an abrupt modality shift, many adaptations were implemented in both the daily class
experience as well as general course structure. Here we will highlight some of these transitions with
an emphasis on some of the lessons learned in the process. In particular, we feature adjustments
made concerning technology, group work, presentations, and assessments.

2.1 Technological Changes

The need to quarantine necessitated adjusting the everyday learning environment to remote learn-
ing, which further required alterations to course structure and policies. Due to the online modality,
teaching via a tablet or document camera became common practice and highlighted the versatility
of this teaching technique for hybrid modalities. This adaptation facilitated the process of posting
notes to the course website or learning management system (Blackboard, Canvas, D2L, Moodle,
etc.) for students who needed to miss class or those with poor internet connection. Moreover, the
use of a tablet aided in seamless grading where an instructor could continue to leave feedback on
assignments comparable to an in-person counterpart.
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Another intentional choice which began pre-pandemic, but became notably beneficial once learning
was moved online, was to incorporate Open Educational Resources (OERs). Using these texts and
other free resources not only diminishes the financial barrier of textbook costs to our students, but
it enhances accessibility for students since many such resources are available in PDF, HTML, and
print formats. OERs have been shown to contribute to academic success by improving course grades
and lowering drop-fail-withdraw rates. Further, it has been shown that students enrolled in OER
courses choose to take a higher number of credits in subsequent semesters [11, 20, 27]. Research
completed by Delgado, Delgado, and Hilton [14] showed in the calculus context that OERs have a
positive impact on Pell Grant-eligible students as well as international students while simultaneously
resulting in similar final exam performance when compared with traditional textbooks.

Transferring active learning and group work to the online setting proved more challenging, but the
intention was to prioritize consistency in students’ learning experiences. Breakout rooms allowed
students to work together while online, and tools such as Google Classroom allowed the instructor
to easily create individual assignments for each student. Students could then share their screen to
work collaboratively, with each student still remaining responsible to complete their individual work
for a grade. Instructors could then grade the activity using rubrics through Google Classroom. The
BigBlueButton accessed through Canvas proved especially useful for group work as the instructor
could join and listen in on all of the breakout rooms simultaneously, most closely mimicking the
in-person classroom.

Students shared their preference in having consistent groups, which can be expedited by assigning
groups in advance or by having users self-select to join their group. Although online groups seem to
take longer to complete assignments in comparison to that of in-person group work since students
can be especially hesitant to contribute online, designating roles such as the group facilitator,
secretary, or task manager can help ease these interactions.

Other tools used include shared Google Docs for groups to record their discussions and Google Forms
to have students submit Exit Tickets. Alternative options such as Jamboards or Padlets have also
proved useful for organizing online discussion, both in the classroom as well as in workshops and
conferences. Specifically, Jamboards worked well for having student groups share their work so that
the instructor could review it quickly without going in and out of Zoom rooms, while Padlets were
useful for general comments and collaborations, especially across universities.

While the need to use breakout rooms is removed during in-person instruction, many of the afore-
mentioned resources remain applicable. Students continue to request that course notes are posted
online, which has remained feasible with the continued use of tablets to take notes while projected
in the classroom. Additionally, students may continue to share Google Docs, Jamboards, and
Padlets to combine course notes, ideas, and solutions, which have become increasingly helpful as
students prepare for tests or exams. Student comfort levels in using video conferencing software
have increased, making software such as Zoom or Microsoft Teams useful in hosting online office
hours or quick student check-ins. As a whole, an increased use of technology has made instructors
more readily available to their students.

2.2 Traditional Assessment Changes

Regardless of the modality of a course, it is imperative that an instructor assess students, both
formally and informally, for their understanding of course objectives. When learning was moved
online, certain assessment strategies transitioned more easily than others.
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For classes in which presentations were a part of the typical semester work, we continued these
presentations online using a video conferencing platform such as Zoom. In several of our courses,
including an interdisciplinary freshman seminar and a group work-oriented general education math-
ematics course, student presentations are expected to include an interactive element, encouraging
engagement with the class. To facilitate online engagement, students often used an online, game-
based learning platform called Kahoot! [12, 15, 38, 41] to help increase class participation. Feed-
back from student presenters revealed that the experience of hosting virtual presentations was
eye-opening and more challenging than they had realized. Overall, this presentation technique
was viewed as a positive learning experience among student presenters. In addition to presenting,
students were expected to provide feedback on their peers’ presentations. To implement the peer
review, Google Forms were created and shared for students to provide feedback, and they were later
used by the instructor to inform the overall grade for the presentation. One unforeseen benefit to
using Google Forms for peer-reviews is that typed comments from classmates were easily shared
with the presenting group. In the in-person counterpart, either the instructor needed to type all of
the feedback or unfortunately, the feedback would not be shared. Questions from our peer review
forms are included in Section 7 along with sample rubrics used for presentations. These online forms
remain useful for in-person classes to quickly gather and share feedback with student presenters.

Changes were also necessary to update exams, group work, and other assessments. In general,
submitting and grading online was made easier with a tablet and stylus, and with the ability to
type extended feedback instead of trying to scribble in a margin. Requiring assignments to be
submitted as a single PDF in the correct orientation simplified the grading process, and students
appreciated flexible deadlines (e.g., at 11:59 pm) in lieu of submitting homework at the beginning
of class.

For traditional exams, the online setting created both academic integrity and student privacy
concerns. As seen in Figure 1, one solution is to use a two-camera proctoring system together with
a lockdown browser to ensure that students can only access approved materials while taking their
test or quiz. This setup can be applied for both synchronous (live Zoom proctoring) or asynchronous
(recorded Zoom proctoring) classes. However, traditional assignments can also be given through
the learning management system or Google Classroom.

2.3 Alternative Assessment Techniques

One option to combat the difficulties of transitioning a course to a variety of modalities is to use
mastery grading or grading for growth, as described in Section 1. In hybrid courses, the in-person
meeting(s) can be used for assessments and reassessments, while completely online sessions can
find convenient times for reassessments using the two-camera proctoring system mentioned earlier.
Other options for courses that are entirely online include open-note but restricted time quizzes or
“Convince Me” meetings during which students can answer questions in office hours that align to
given objectives. Some of these courses used a three-tiered grading scale in which students are only
awarded credit when they demonstrate a complete understanding of the objective being assessed in
the question. The student earns the top score of “mastery” once they demonstrate understanding
of the objective, and then they do not need to be assessed again on this objective. The middle tier
is used to signal to students that they showed partial understanding, but were missing a key part of
the objective. The lowest tier is given when a student only demonstrates minimal understanding.
Course grades are based on how many of those objectives students have demonstrated they have
learned by the end of the course usually through exams, quizzes, or retesting opportunities outside
of class [3, 23].
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Figure 1: An example of a view from the secondary device of a two-camera proctoring system for
use in online exams. Students are given setup instructions before the beginning of the exam that
specify permissible resources and proper camera orientation. Students show their entire workspace
to ensure that they are not using unauthorized materials.

For alternative assessment techniques such as oral exams, finding an online solution required more
creativity. Oral exams have been found to have pedagogical advantages and have been used in
a variety of courses including business, computer science, geology, mathematics, and statistics
[6, 7, 26, 39, 40, 42, 48, 49]. Instructors have reported that these oral exams allow them to better
determine student thinking [6, 42, 48, 49]. Oral exams were used in Real Analysis to assess more
challenging proofs than what could be asked in an in-class mastery exam. Before the pandemic,
this class assigned students three to four proofs to work on each week. The students and instructor
then scheduled a time outside of class to present one of the proofs, chosen by the instructor.
This assessment strategy also works well in other upper-division proof-based courses. Sometimes
when students work on proofs, they make incorrect assumptions which derail the logical argument,
making it challenging for the instructor to assess student understanding, particularly when the
assumption trivializes the proof. If the instructor were to grade these proofs as take-home exams,
they would need to determine how many points to take off without being sure what the student
really understands. During an oral presentation, however, student-teacher interactions become a
dialogue. It is easy for the instructor to ask “How do you know?” or “Why?” to have the student
justify their reasoning. If they make a mistake or wrong assumption, the instructor can assess
how they respond to questions. Additionally, if the student gets stuck on the proof, they can ask
for a hint. This allows the instructor to take off a percentage for the hint but then assess their
understanding of the course concepts by seeing how they use the hint. The student feedback and
exit interviews from Real Analysis have been favorable, and students say that they learn more
from this oral method of assessment than if the instructor were to write comments on their take-
home exams, which supports Sabin et al. [42]. Oral exams also allow students to take the time
to work on more challenging proofs. For example, the instructor can ask questions related to
having a Darboux integrable function bounded below and ask the student to prove the reciprocal
function is also Darboux integrable. Such a question may take too much time for an in-class exam.
Another example could be to introduce the definition of pseudo-Cauchy and have students explain
the difference between sequences with this property and Cauchy sequences. The instructor could
then ask them to give an example of a divergent pseudo-Cauchy sequence. One suggestion is to
perhaps rename properties so that it is harder for students to find the answer online.
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During the in-person oral exams, students would work and write up their proofs at the board
in the professor’s office. When moving these assessments online, students shared their screen to
present their proof. Usually these proofs were written beforehand in LATEX. This worked, but
there were challenges because students would read their argument instead of presenting it when
they were online. It was also challenging for students to rework their proof. They could add text
and annotate the shared screen or share a LATEX document, but this took much more time than
in-person oral exams. Moreover, it was difficult for students who did not have a stylus to write
on the virtual white board. Even though there were some small inconveniences for doing online
oral exams, the pedagogical benefits that come from using oral exams, such as creating a dialogue
between instructor and student, allowing students to practice communicating logical reasoning, and
reframing mistakes as learning opportunities, were still worthwhile. Two sample rubrics which can
be used to assess oral exams are included in Section 8.

3 Methodology

Given all of the pedagogical changes that were necessitated by the pandemic, questions about
students’ mathematical anxiety, mindset, and reception of alternative assessment techniques became
even more relevant. We had already begun studying the impact of mastery grading and expanding
upon the initial studies in [24] and [25] when the unexpected move to remote learning in 2020
occurred. The COVID-19 pandemic provided an opportunity to analyze a subset of mathematics
courses that used mastery grading by surveying the impact of mastery grading for remote or online
classes. As mentioned in Section 1, there has been some evidence that alternate grading methods
can help with reducing test anxiety, and we wanted to study the impact of using these grading
schemes from the Spring 2020 through the Spring 2021 semesters. This paper reports on the
following research questions which naturally occurred during the pandemic:

1. Was there a difference between students’ anxiety in mastery graded courses throughout the
course during the pandemic?

2. Did mastery graded courses help students develop a growth mindset in comparison with
traditionally graded courses during the pandemic?

3. How much control over their grade/situation did students feel they had in mastery graded
courses during the pandemic?

For this study, data were collected in eight different undergraduate mathematics courses at Lewis
University and Marian University ranging from Calculus 1 through Real Analysis. In order to
analyze the effectiveness of alternative assessment as a result of the pandemic, these data represent
146 students who responded to our survey from Spring 2020 through Spring 2021 and were enrolled
in courses that implemented some type of mastery-based testing, standards-based grading, etc.

Twice during the semester, students completed an anonymous survey about their thoughts on
assessment and the testing process. To maintain anonymity while still allowing for data pairing,
each student was asked to use a six-digit identification number that consisted of the two-digit month
and two-digit day of their birthday followed by the first letter of their mother’s first name and the
first letter of their father’s first name. The survey asked to what extent the students felt levels
of test anxiety throughout the semester, whether they went back and studied past concepts, and
whether or not they felt that they better understood the material after studying the topics multiple
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times. The survey also included questions to help gauge the student’s mindset about learning taken
from Dweck’s Mindset Survey [17]. Survey questions are provided in Section 9.

Since we had pre- and post-data from mastery courses and post-data from traditional courses, we
decided to use two main types of hypothesis tests for our analysis. When comparing the pre- and
post-data, we were able to use the identification numbers to create paired data for two-sample
Student’s t-tests for paired data. When comparing the post-data between mastery and traditional
courses, we utilized two-sample Student’s t-tests for independent samples.

4 Results and Interpretation

In this section, we present our findings from the analysis organized into three categories: mathe-
matics anxiety level, growth mindset, and perceptions of learning in the classroom.

4.1 Mathematics Anxiety

When analyzing the statement “I felt anxious before taking exams in this course,” a Student’s
t-test for independent samples was unable to find a significant difference between students in tra-
ditional versus mastery courses (with a p-value of approximately 0.479). When surveying students
in mastery courses, 64.5% of students felt less anxious about mastery exams than they did about
traditional exams. Figure 2 provides the percentages of students in mastery graded courses who
agreed or disagreed with the statement, “I felt anxious before taking exams in this course,” at the
beginning of the semester.

Figure 2: Percentages of students in a mastery graded course and their beliefs on the statement, “I
felt anxious before taking exams in this course.”

4.2 Growth Mindset

In order to determine significant differences, two separate hypothesis tests were run for each ques-
tion. A Student’s t-test with independent samples comparing the post-surveys from the traditional
versus mastery courses was used to determine if there were significant differences between the
groups after completing their courses. Additionally, a Student’s t-test with paired samples using
the identification system described in Section 3 was used to determine if the students’ mindsets in
mastery courses had changed between their pre- and post-surveys. Table 1 provides the p-values
from these hypothesis tests with the p-values deemed significant in bold font.
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Statements
Paired Mastery

Pre- vs.
Post-Survey

Post-Traditional
vs. Post-Mastery

“You have a certain amount of math intelligence, and you
can’t really do much to change it.” 0.911 0.724

“I tend to give up when I make mistakes or fail a task.” 0.029 0.484
“When something is hard, it just makes me want to work
more on it, not less.” 0.003 0.545

“To be honest, you can’t really change how intelligent you
are in math.” 0.496 0.090

“You can learn new things, but you can’t really change
your basic math intelligence.” 0.150 0.663

“I feel confident when doing mathematics.” 0.005 0.029
“To tell the truth, when I work hard, it makes me feel as
though I’m not very smart.” 0.717 0.526

Table 1: Results from the two-sample hypothesis test on growth mindset. Results that are in bold
font and highlighted in blue represent significant p-values with a threshold of 0.05.

Only four of the hypothesis tests led to significant p-values, allowing us to support the following
conclusions:

• Students in mastery courses agreed more with the phrase, “I tend to give up when I make
mistakes or fail a task,” near the end of their class when compared to the beginning.

• Students in mastery courses agreed more with the phrase, “When something is hard, it just
makes me want to work more on it, not less,” near the beginning of their class when compared
to the end.

• Students in mastery courses agreed more with the phrase, “I feel confident when doing math-
ematics,” near the beginning of their class when compared to the end.

• Students at the end of mastery courses agreed more with the phrase, “I feel confident when
doing mathematics,” when compared to students at the end of traditional courses.

The first three results above seem to suggest that the growth mindset of students was hindered
in mastery courses since students would come in with more confidence and a harder work ethic.
However, the fourth result suggests that student confidence at the end of mastery courses was
greater than student confidence at the end of traditional courses. Combining these results with
what teachers noticed in the classroom, it seemed as though students were burnt out by the end of
the semester, which may be the true culprit that led to a lessened growth mindset.

4.3 Perceptions of Learning

There were four statements whose post-data from traditional and mastery courses were compared
using Student’s t-tests for independent samples. The three statements, “I felt that I had control
over the grade I earned in this course,” “The in-class assessments deepened my understanding
of the ideas in this course,” and “The results of my in-class assessments accurately reflect my
knowledge,” all did not have significant results, with p-values of approximately 0.337, 0.132, and
0.711, respectively. However, the hypothesis test on the statement, “I felt the grade that I earned
reflected my understanding of the course content,” had a p-value of approximately 0.026. Since this
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was less than 0.05, we investigated it further and found that students in traditional courses agreed
with that statement more than students in mastery courses, indicating that students in traditional
courses felt that their grade was a better reflection of their understanding than students in mastery
courses did. This does not, however, mean that mastery students felt as though they had no control
over their course grade.

As seen in Figure 3, 82.2% of respondents in mastery graded courses agreed or strongly agreed
that they felt they had control over their grade. Much of this belief is likely strengthened by
students’ ability to retest concepts to show understanding of the material. Additionally, 58.6% of
students in mastery-graded courses agreed or strongly agreed that their course grade reflected their
understanding of course content.

Figure 3: Percentages of students in a mastery-graded course and their beliefs on the statements,
“I felt that I had control over the grade I earned in this course,” and “I felt the grade that I earned
reflected my understanding of the course content.”

This was further supported by 73.3% of students responding that the in-class assessments deepened
their understanding of the ideas in the course while 63.4% agreed or strongly agreed that their in-
class assessment results reflected their knowledge of the course content, as shown in Figure 4.

Figure 4: Percentages of students in a mastery graded course and their beliefs on the statements,
“The in-class assessments deepened my understanding of the ideas in this course,” and “The results
of my in-class assessments accurately reflect my knowledge.”
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Much of the qualitative student feedback that we received at the end of the semester aligned with
the data above. One student mentioned their role in a mastery graded course, “I love mastery
based grading and I feel like it gives me a real choice in my grade.” Another student recognized
how mastery grading forced them to learn the material: “I really feel mastery based testing is the
best way to learn math. It forces one to actually understand the process of problem solving
and not just memorize a small bit of information to regurgitate onto a test.” Finally, we must
recognize that not all feedback was positive. Students have become accustomed to certain types of
assessment in their secondary education. One student mentioned, “Being new to a mastery based
class might be the reason why I struggled a bit because I’m so used to traditional grading, but
at least I tried.” In a mastery-graded course, it is important to emphasize the reason and benefits of
using this method of assessment. Multiple articles [3, 8, 10, 23, 24, 44] report student satisfaction
in this assessment method and improvements on test anxiety and confidence. Students report
appreciation for having extra time to practice objectives and that this assessment method allows
them to learn the material more deeply [3, 24, 25]. Generally, student buy-in is easy to obtain, but
sometimes, they miss their old routine of testing. We point the readers to Kelly’s article [31] which
specifically outlines suggestions for how to build buy-in for this type of alternate assessment.

5 Discussion

In the abrupt transition to online learning, we found it imperative to keep courses as similar to their
in-person counterparts as possible. Students were dealing with stress and other difficulties outside
the classroom. If we were able to maintain “normal” in the mathematics classroom, we hoped this
would aid in minimizing their stress levels. Students mentioned that breakout rooms helped to
maintain the in-person interactions (“She made the transition seamless. She is still interactive with
us and the class still feels normal.”) and that the new course set-up was comparable to in-person
meetings (“This transition went well. Nothing was lost in the move to zoom meetings instead of
in-person class.”). They recognized the intention behind keeping the class the same (“It has been
the same because she is trying to teach the same. The class was already easy to begin with, but
she has done a great job of keeping the class consistent.”), and some even found online to be
more beneficial for their learning (“I think I may have been the only one that found this course
better online. I think this was the best class of mine to have online this semester. I learned a
lot and loved how the course was laid out. The mastery learning grading was very different and a
little hard to get used to but in the end I loved it.”). As a whole, students were appreciative of the
flexibility behind the transition to online learning.

There were two major items to note in our data. The first was having a very small pool of traditional
students (only seven respondents for the post-survey and none in pre-survey) made data analysis
difficult. Many of our hypothesis tests comparing traditional and mastery classes did not have
significant results, and we were unable to run a pre- versus post-analysis on traditional classes
without having any pre-surveys. The second was that there was a trend in student growth mindset
being lessened by the end of the semester. We can see from our mastery pre- versus post-results that
students were less confident and wanted to put in less work by the end of those courses. Anecdotally,
we noticed that students in general seemed to be burned out by the end of the semester, especially
given the context of living in a world at the height of a pandemic.
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6 Conclusion

As instructors, the measures we took in order to merely survive teaching during a pandemic have
benefits that extend beyond these tumultuous times. Many of the adaptations outlined in Section 2
are practices that continue to be useful moving forward, both in-person and online. Such pedagog-
ical changes include having “blended” classes in which we maintain an online environment that is
similar to the in-person experience and offering online tutoring or office hours to engage students
who are unable to attend in-person. Traditional in-person courses can also benefit from online
instruction when either the student or instructor is unable to attend class. Another pedagogical
change is the uploading, collecting, and grading assignments online. This allows instructors to pro-
vide more immediate and helpful feedback as well as the possibility of end of the day assignment
deadlines. Students indicated turning in online assignments provided more flexibility. Finally, pro-
viding students with consistent groups during class time allowed them to develop better teamwork
skills working with the same peers throughout the semester. These new changes, however, bring to
light new challenges that must be considered. From the student perspective, there were difficulties
accessing stable internet and a quiet workspace. There were privacy issues that resulted from tech-
nological changes such as the lockdown browser Respondus, and the two-camera proctoring system
for tests. From the faculty perspective, there were concerns about increased workload, student
cheating, and providing equitable and fair opportunities for reassessment. The student feedback in
Sections 4 and 5 suggests the pedagogical changes were overall helpful in student learning.

From students, the adaptations seemed to be appreciated. While they seemed to have slightly
lessened test anxiety with mastery grading, it was harder to judge the impact that mastery had
on their growth mindset and their perceptions of their mathematical learning. On one hand, a
small sample size of traditional courses made analysis difficult. On the other, students seemed
very burned out from their multitude of shifting responsibilities throughout the pandemic. These
combined made it difficult to fully understand the direct impacts different teaching and testing
styles had on students.

As a whole, the pandemic taught us that as instructors, we are always learning as much as our
students. While students focus on the content, our focus is in how to best present material to them.
There are teaching techniques that we try and find do not work for our audience. Other times,
changes are necessitated by worldwide shutdowns. Regardless, it is our responsibility to reflect
upon these strategies and lessons to determine how they can help us moving forward.

7 Sample Group Project Rubrics

Below is a sample rubric for group projects that include two components: a formal presentation
and a class discussion or activity. This rubric has been used in both major and non-major courses.
We frequently use it in general education mathematics courses where a final group project is more
appropriate than a final exam.

• Preparation for presentation (5 pts)

1. Attended the last two class sessions to work on the presentation.

• Presentation (30 pts)

1. Introduction about the story (3 pts)
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2. Introduction about the author (3 pts)
3. Fun Facts or interesting tidbits about story/time period (2 pts)
4. Includes analysis of literary concepts discussed in class (armchair detective, film noir,

etc.) (5 pts)
5. Includes analysis of deductive reasoning concepts discussed in class (logic, deductive

reasoning, inductive reasoning, Holmesian deduction) (5 pts)
6. Use of technology in presentation, visual is interesting, not just text (3 pts)
7. Organization and flow of presentation/don’t just read slides (3 pts)
8. Verbal explanations (3 pts)
9. Each member of the group is involved in the presentation or activity (3 pts)

• Class Discussion or Activity (10 pts)

1. Well-planned and organized (2 pts)
2. Engaging and interesting activities or discussion questions (4 pts)
3. The group members did a good job of facilitating the activity (4 pts)

• Peer Evaluations (5 pts) (To be completed by students in class, see Rubric 7.1)

• Own Group Evaluations (10 pts) (To be completed by students in class, see Rubric 7.2)

• Attendance during presentations (5 pts)
1 point for each presentation you are not presenting.

• Final Grade for Presentation (65 pts)
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7.1 Group Project: Peer Evaluation Form/Rubric

Immediately following a group presentation, we ask the students in the class to provide feedback
on the presentation. Selected comments are shared with the group to provide peer feedback. Below
we provide the evaluation questions.

1. The presentation was interesting, engaging, and held my attention.
strongly disagree 1 2 3 4 5 6 7 8 9 10 strongly agree

2. The presentation was understandable and easy to follow.
strongly disagree 1 2 3 4 5 6 7 8 9 10 strongly agree

3. The presentation was organized and flowed well.
strongly disagree 1 2 3 4 5 6 7 8 9 10 strongly agree

4. The group seemed to have put a lot of thought and effort into this presentation.
strongly disagree 1 2 3 4 5 6 7 8 9 10 strongly agree

5. Overall how would you rate this presentation?
poor fair good very good excellent

6. Additional Comments:

7.2 Group Project: Own Group Evaluation Form/Rubric

After their group projects, we ask students to provide feedback on each of their group members
and their own participation as a group member. Below we provide the evaluation questions.

Participation
Group member did not

participate, wasted time,
or worked on unrelated tasks.

1 2 3 4
Group member participated

fully and was always
on task.

Listening
Group member did not

listen to others and
often interrupted them.

1 2 3 4
Group member

listened carefully
to others’ ideas.

Feedback
Group member did not

offer constructive or
useful feedback.

1 2 3 4
Group member offered
detailed, constructive

feedback when appropriate.

Cooperation
Group member often

treated others disrespectfully
and/or did not share the work load.

1 2 3 4
Group member treated
others respectfully and

shared the work load fairly.

Time Management
Group member wasted time,
was distracting, and did not

complete tasks in a timely manner.
1 2 3 4

Group member stayed
on task and completed tasks

in a timely manner.
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8 Sample Oral Exam Rubrics

Both sample rubrics in Tables 2 and 3 were modified from several resources from the Mathematical
Association of America’s Project NExT and Inquiry-based Learning Networks. We would also like to
thank Dr. Jessie Hamm, Associate Professor of Mathematics at Winthrop University, and Dr. Cory
Johnson, Associate Professor of Mathematics at California State University San Bernardino, for
their support and feedback on the logistics and rubrics used for oral exams. Below are two sample
rubrics which have been used for oral exams.

Excellent Good Fair Poor
Correct
Mathematics:
30 points

Correct
computations,
demonstrates clear
understanding of
problem and
concepts, no errors,
no hints needed
(29-30 pts).

Correct
computations, good
understanding of
problem and
concepts, needs one
hint, but was able to
continue from there
(25-28 pts).

Few errors in
computations, shows
slight
misunderstandings of
problem and
concepts, needs more
than one hint, but
was able to continue
after hints (21-24
pts).

Many hints and
prompts needed and
was not able to
complete proof
without prompting,
shows
misunderstanding
about problems and
concepts (0-20 pts).

Correct
Communication
of Mathematics:
30 points

Explains every step
without prompting,
shows clear
understanding (29-30
pts).

Explains most steps,
but after prompting,
gives clear
explanations which
demonstrate
understanding (25-28
pts).

Explains most steps,
but after prompting,
gives explanations
which demonstrate
slight
misunderstanding of
problem and
concepts (21-24 pts).

Does not explain
most steps, cannot
sufficiently explain
reasoning, even after
prompting (0-20 pts).

Correct
Notation of
Mathematics:
20 points

Uses correct notation
and correct
quantifiers (20 pts).

Uses correct notation
and quantifiers
except for 1-2 minor
errors (17-19 pts).

Makes multiple
minor or 1-2 major
errors in use of
notation/quantifiers
(14-16 pts).

Does not use correct
notation, misuses or
does not use
quantifiers (0-13 pts).

Correct
Structure of
Proof: 20 points

Uses good structure
of proof, clearly
defines all terms,
includes connection
statements such as
“thus, so then,
therefore, ...” (20
pts).

Organized proof, but
may not define all
terms or miss a
connecting statement
(17-19 pts).

Proof is disorganized,
but reasoning and
steps can be shown
to follow from
previous statements;
variables are not all
defined (14-16 pts).

Proof is very
disorganized and
hard to follow, next
step does not clearly
follow from previous
step (0-13 pts).

Table 2: Sample of oral exam rubric.
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Reasoning Excellent (6 pts) Acceptable (4 pts) Repairable (2 pts) Unacceptable (0 pts)
Hypothesis
and
Structure
(direct,
induction,
contradic-
tion, etc.)

Structure and hypothe-
sis are appropriate and
correctly applied.

Correct hypothesis ap-
plied, but with needless
complication or minor
flaw(s).

Inappropriate or seri-
ously flawed structure
(requires many correc-
tions), hypothesis in-
correctly used.

No identifiable or in-
complete proof struc-
ture, proves different re-
sult, hypothesis ignored.

Definitions,
Theorems,
Terminol-
ogy

Each used or refer-
enced correctly. The
proof uses accurate and
appropriate mathemat-
ical notation and termi-
nology. Symbolic no-
tation is used where
it clearly simplifies the
discourse, and avoided
when English will bet-
ter serve the reader.

Minor terminology or
definition error. Nota-
tion and terminology
are correctly used, but
there may be instances
where the discourse
would benefit from
either more or less
use of symbols versus
English. The proof
accurately invokes all
needed definitions,
through they may
appear other than
precisely where needed.

Terminology confused,
distracting notation.
Some relevant defini-
tions or theorems are
missing or misstated,
but proof is other-
wise understandable.
Most of the notation
and terminology used
accurately. Errors
are identifiable and
correctable by a reader
with experience similar
to author.

Terminology incorrect or
notation indecipherable,
complete misuse of defi-
nition or theorem. No-
tation and/or terminol-
ogy is frequently mis-
used. The writer may
use personal rather than
standard notation.

Logic and
Reasoning

A clear, complete,
concise, cohesive, and
properly ordered chain
of deductive steps leads
from the hypothesis to
the conclusion.

Correct and reasonably
well-organized, all vari-
ables defined. The
chain of deductive steps
is complete and cor-
rectly ordered.

Contains flaws or omis-
sions, at least one unde-
fined variable. One or
more intermediate de-
ductive steps are miss-
ing or unclear, but the
correctness of the proof
is not compromised.

At least one fatal flaw
(e.g., assumed what is
being proved or omits
key step) or the stated
chain of deduction does
not leads to the stated
conclusion.

Presentation Excellent (3 pts) Acceptable (2 pts) Repairable (1 pt) Unacceptable (0 pts)
Style and
Clarity

The proof is well-
organized and succinct,
easy-to-read, without
inclusion of irrelevant
definitions or theo-
rems. The proof moves
seamlessly between
symbolic notation and
standard English.

Unnecessary detail(s)
or awkwardness, but
start and conclusion
are clearly marked.
The author generally
avoids digressions, but
may repeat some ideas
unnecessarily.

The proof is well-
organized, but includes
extraneous steps, def-
initions, theorems, or
unnecessary repetition.
Disjointed, arrows to
additions, and scratch
outs are included.

Totally confused (e.g.,
scattered about the page
or unnecessary state-
ments).

Grammar Grammar and spelling
correct; equations are
part of the sentence
structure.

Structure apparent,
but with sentence
fragments.

Spelling and grammar
(or lack of) are distract-
ing.

Difficult to decipher.

Hints (oral
exam only)

No hints needed. Needs one hint and is
able to continue from
there.

Needs more than one
hint or a huge hint; able
to continue.

Many hints and prompts
needed; not able to con-
tinue.

Table 3: Another sample of oral exam rubric.
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9 Surveys

9.1 Pre-Course Questionnaire

The results of this questionnaire will be anonymous. We appreciate your honest feedback. Please
show how much you agree or disagree with each statement by marking the box that corresponds
to your opinion. There are no right or wrong answers. We are interested in your ideas.

To ensure that the surveys remain anonymous, participants will use a 5-digit identifying number,
given by the month and day of their birthday followed by the last digit of their birth year. For
example if you were born on May 19, 1990, your number would be 05190.

Identification Number:

Instructions: Mark the response that most accurately reflects your opinion

1. You have a certain amount of math intelligence, and you can’t really do much to change it.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

2. I like my work best when I can do it really well without too much trouble.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

3. It is important to me that I learn the main ideas of this course.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

4. I expect that I will have control over the grade I earn in this course.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

5. I tend to give up when I make mistakes or fail a task.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

6. I expect that the grade that I earn will reflect my understanding of the course content.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

7. When something is hard, it just makes me want to work more on it, not less.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

8. To be honest, you can’t really change how intelligent you are in math.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

9. I like work that I’ll learn from even if I make a lot of mistakes.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

10. I am excited to take this course.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

11. You can learn new things, but you can’t really change your basic math intelligence.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

12. I like my work best when I can do it perfectly without any mistakes.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

13. I feel confident when doing mathematics.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

14. To tell the truth, when I work hard, it makes me feel as though I’m not very smart.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

15. How many hours per week are you spending on this course outside of class time?
□ 0-2 hours □ 3-5 hours □ 6-8 hours □ 9-11 hours □ 12-14 hours □ more than 14 hours

16. I am usually anxious before taking exams.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

17. I feel anxious before exams in a majority of my other courses.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response
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18. Which study methods did you use? Mark all that apply.
□ Practicing additional problems from the book
□ Completing problems on review materials
□ Reading the textbook
□ Reading my notes
□ Redoing homework problems
□ Trying examples from the textbook or notes on my own
□ Group studying
□ Discussions with my instructor
□ Recopying notes from class
□ Watching videos online
□ Math Study Tables
□ Private Tutor
□ LARC or CASE Tutoring
□ Other:

19. Demographic information:
□ Male □ Female □ Other □ Prefer not to answer

20. Are you White, Black or African-American, American Indian or Alaskan Native, Asian, Native
Hawaiian or other Pacific islander, or some other race (check all that apply):
□ American Indian or Alaskan Native
□ Asian
□ Black or African-American
□ White
□ Hispanic
□ Latinx
□ I prefer not to answer
□ Other

21. Additional comments regarding assessment in this course:

9.2 Post-Course Questionnaire

The results of this questionnaire will be anonymous. We appreciate your honest feedback. Please
show how much you agree or disagree with each statement by marking the box that corresponds
to your opinion. There are no right or wrong answers. We are interested in your ideas.

To ensure that the surveys remain anonymous, participants will use a 5-digit identifying number,
given by the month and day of their birthday followed by the last digit of their birth year. For
example if you were born on May 19, 1990, your number would be 05190.

Identification Number:

Instructions: Mark the response that most accurately reflects your opinion

1. You have a certain amount of math intelligence, and you can’t really do much to change it.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

2. I like my work best when I can do it really well without too much trouble.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

3. It is important to me that I learn the main ideas of this course.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

4. I felt that I had control over the grade I earned in this course.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

5. I tend to give up when I make mistakes or fail a task.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response
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6. I felt that the grade that I earned in this course reflected my understanding of the course
content.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

7. When something is hard, it just makes me want to work more on it, not less.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

8. To be honest, you can’t really change how intelligent you are in math.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

9. I like work that I’ll learn from even if I make a lot of mistakes.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

10. I enjoyed taking this course.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

11. You can learn new things, but you can’t really change your basic math intelligence.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

12. I like my work best when I can do it perfectly without any mistakes.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

13. I feel confident when doing mathematics.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

14. To tell the truth, when I work hard, it makes me feel as though I’m not very smart.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

15. How many hours per week did you spend on this course outside of class time?
□ 0-2 hours □ 3-5 hours □ 6-8 hours □ 9-11 hours □ 12-14 hours □ more than 14 hours

16. I felt anxious before taking exams in this course.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

17. I feel anxious before exams in a majority of my other courses.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

18. I feel less anxious before mastery-based exams than traditional exams. (Skip if you have not
used mastery-based exams.)
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

19. During the course of the semester, my anxiety level...
□ I had no anxiety □ decreased □ stayed the same □ increased □ no response

20. The assessments in this course test our understanding of key concepts.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

21. Studying for the exams in this course helped me to learn the material.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

22. The results of my in-class assessments accurately reflect my knowledge.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

23. The in-class assessments deepened my understanding of the ideas in this course.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

24. I relied mostly on memorizing solutions to earlier problems to prepare for in-class assessments.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

25. Throughout the semester, I often revisited old ideas that I hadn’t fully understood.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

26. I have retained past concepts and ideas learned earlier in the course.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

27. I have a good understanding on how material learned earlier in the semester relates to material
learned later in the semester.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response

28. I feel prepared to approach a wide range of problems from this course.
□ strongly agree □ agree □ disagree □ strongly disagree □ no response
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29. Which study methods did you use? Mark all that apply.
□ Practicing additional problems from the book
□ Completing problems on review materials
□ Reading the textbook
□ Reading my notes
□ Redoing homework problems
□ Trying examples from the textbook or notes on my own
□ Group studying
□ Discussions with my instructor
□ Recopying notes from class
□ Watching videos online
□ Math Study Tables
□ Private Tutor
□ LARC or CASE Tutoring
□ Other:

30. Additional comments regarding assessment in this course:

31. Demographic information:
□ Male □ Female □ Other □ Prefer not to answer

32. Are you White, Black or African-American, American Indian or Alaskan Native, Asian, Native
Hawaiian or other Pacific islander, or some other race (check all that apply):
□ American Indian or Alaskan Native
□ Asian
□ Black or African-American
□ White
□ Hispanic
□ Latinx
□ I prefer not to answer
□ Other
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Abstract

Are you looking for innovative teaching strategies for geometry or other mathematics and physics
courses? In this article, we offer a discussion of several graphic novels and their potential for
successful teaching and learning at the high school and university levels. We describe how
engaging stories, combined with mathematical and scientific meaning found in both text and
image, can help to excite students, enrich learning, and explain mathematical concepts. We
report on recent data collected from multiple mathematics and physics classes that extend prior
research on the use of graphic novels to teach English Language Arts (Boerman-Cornell and Kim,
2020) and will inform a book focused on the STEM disciplines that is currently in development
(Boerman-Cornell, Ho, Klanderman, and Klanderman, in press).
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1 Introduction

When you reflect on your experiences learning mathematics or physics in high school and college,
what non-textbook readings impacted your understanding of and love of the discipline? Are there
similar resources that you have implemented to teach mathematics or physics at these levels?
Common responses to these questions include Edwin A. Abbott’s Flatland, George Polya’s How to
Solve It, a biography of a famous physicist such as Albert Einstein, William Dunham’s Journey
Through Genius, or most recently Francis Su’s Mathematics for Human Flourishing. We argue
that these non-textbook readings can help to explain concepts, enrich understanding, and excite
students to pursue careers in mathematics and physics as well as other disciplines within Science,
Technology, Engineering, and Mathematics (STEM).

In this article, we expand the scope of non-textbook read-
ings to include a genre known as graphic novels. Graphic
novels leverage text, images, and the interplay between
these two media in longer works than traditional comic
books (see Figure 1 for a sample page). In particular, we
argue that graphic novels can be a useful supplement to
traditional textbooks for learning in both the mathemat-
ics and physics classrooms. Further, we offer exemplars of
graphic novels that you might find useful in the teaching
and learning at the university level.

2 Literature Review & Methodology
Although research into the use of graphic novels in teach-
ing and learning is still emerging, there are several recent
studies that document their potential for use in the class-
room. Though not exclusively novels, graphic novels are
generally book length and employ text, images, and the
interplay of the two to convey meaning. Cook (2014) did
an experimental study with high school students in which
he compared students reading graphic novels with conven-
tional texts containing the same information. Cook found
that both grade levels and gender have a significant effect
on how well students learn from graphic novels.

Figure 1: Page 55 from the graphic
novel Max the Demon versus Entropy
of Doom by Assa Auerbach and Richard
Codor, used with permission.

In particular, while most students had improved reading comprehension through the use of graphic
novels, females and seniors benefited even more than their male and younger counterparts. Meier
(2012) identified specific affordances that graphic novels can provide science teachers and their
students, including embedding pictures in text to encourage students to engage more deeply and
using anthropomorphizing objects of study to help students connect with the material. While
research in the use of graphic novels in the teaching and learning of mathematics is not yet available,
multiple studies have documented the positive impact of integrating literature into mathematics
classrooms (e.g., Siebert and Draper, 2012; Koellner, Wallace, and Swackhamer, 2009).

Because vocabulary can be a high barrier to entry in STEM disciplines, graphic novels provide a
helpful context for new ideas within the interplay of text and image. For instance, Boerman-Cornell,
Kim, and Manderino (2017) discuss questioning, hypothesizing, model building, and many of the
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higher-order skills necessary for work in these fields, as well as their use in graphic novels. They
also identify three habits of practice in science, including constructing models of scientific processes,
writing scientific explanations, and reading nonlinguistic scientific representations. They provide
examples of graphic novels from both science and mathematics that demonstrate each of these
habits. More recently, Boerman-Cornell and Kim (2020) have analyzed the use of graphic novels
in the teaching and learning of English Language Arts, and Boerman-Cornell, Ho, Klanderman,
and Klanderman (in press) are currently working on a similar analysis of the use of graphic novels
in the teaching and learning of science, technology, engineering, and mathematics (STEM) at the
middle school, high school, and university levels.

In this article, we limit our focus to two specific STEM disciplines: physics and mathematics. We
offer examples of specific graphic novels that could be used in college and university classrooms
while noting that some of these same graphic novels could be used at the middle school or high
school level. Further, many graphic novels are versatile enough to be able to be used in the context
of a variety of courses and highlight the interdisciplinary nature of many real world applications.
Therefore, especially for readers who may not be familiar with graphic novels and their use in
the classroom, this paper is designed as a jumping-off point for creative use of graphic novels in
education more broadly.

This research team designed a study to assess the potential impact of specific graphic novels in
the teaching and learning of physics and mathematics at the undergraduate level. Jason Ho se-
lected two different graphic novels, one for use in his first-year physics course and one for use in
an advanced physics course, each taught at Dordt University during the 2021-2022 academic year.
Sarah Klanderman selected the graphic novel Who Killed Professor X? for use with her pre-service
secondary mathematics teachers enrolled in her advanced geometry course at Marian University
during the fall 2021 semester. Jim Turner agreed to use this same graphic novel in his advanced
geometry course at Calvin University during the spring 2022 semester. Finally, Dave Klanderman
selected the same graphic novel for a writing prompt on the take-home final of his middle school
mathematics methods course taught at Calvin University during the spring 2022 semester. Ap-
provals from the appropriate Institution Review Board from each of these three universities were
obtained that allowed students enrolled in these courses to voluntarily provide their feedback on
each of the graphic novels. For the methods course, students also gave permission for their writing
prompts to be included as data for the study. In the following sections, we provide an overview of
our experiences with the use of these graphic novels in the teaching and learning of mathematics
and physics at our universities, and we include representative student comments to provide one
qualitative measure of the effectiveness of this pedagogical strategy.

3 Graphic Novels for Physics

In his first-year physics course at Dordt University, Jason Ho created a laboratory activity based
upon the graphic novel Max the Demon versus Entropy of Doom written by Assa Auerbach and
illustrated by Richard Codor. After noticing that students in a first-year physics course typically
found the concept of entropy to be challenging, he developed a set of activities designed to be
completed during a three-hour laboratory period. The activities explored multiple definitions of
entropy, including as an equation, a statistical phenomenon, unavailable energy, and the “arrow
of time.” Students read and discussed the chapters of the graphic novel as they examined these
paradigms of entropy used throughout history. He secured permission to reproduce portions of
the graphic novel for use in his classroom. He notes that the recent release of Tenet, a film by
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Christopher Nolan, may have increased student engagement with the “arrow of time” paradigm for
entropy. The learning activity concluded with a hands-on exploration of entropy as a statistical
phenomenon using 6-, 8-, and 12-sided dice, an activity inspired by LoPresto (2010). This activity
has been included in full in Appendix 1 for those who would like to see more.

After implementing these activities, Ho found that students were highly engaged in this laboratory
session based upon the graphic novel. Several students even stayed late after class to read the
entire graphic novel with one remarking “Why can’t all textbooks be comic books?” He also asked
students to complete a short survey based upon this laboratory session. Out of 22 students, 19
either agreed or strongly agreed with the statement “I would recommend an appropriate graphic
novel in the teaching and learning of other STEM concepts,” and 20 either agreed or strongly
agreed with the statement “I found the graphic novel a helpful approach to learning the STEM
concepts more deeply.” While noting that this is a convenience sample, we nonetheless argue that
there is strong potential for the use of graphic novels in the teaching and learning of physics as
well as other STEM disciplines. Comparing a graphic novel to other textbook and non-textbook
readings, 18 either agreed or strongly agreed with the statement “The graphic novel format makes
the story more meaningful for me.” This response is not surprising and perhaps underscores the
disciplinary reading skills that are necessary to understand difficult concepts in more traditional
physics textbooks.

During a subsequent semester in his advanced quantum physics course, Ho used the graphic novel
Suspended in Language: Niels Bohr’s Life, Discoveries, and the Century He Shaped by Jim Ot-
toviani and a team of five illustrators. This was a small class of five students, and he decided to
place one copy of the graphic novel on reserve in the library and purchased another copy to leave
in the physics lab for students to borrow as needed. This graphic novel links to a related work by
Allison Fleshman, Engaging Students in Quantum Theory Using a Graphic Novel About Niels Bohr.
In this physics course, Ho assigned weekly readings from the graphic novel and hosted discussions
during class that aligned with specific concepts covered in the course (see Appendix 1 for sample
questions that were integrated in these activities). Incorporating this graphic novel expanded the
course content in an unanticipated way: the students were very attuned to the justice and ethical
aspects of the novel, and they unanimously commented on how humanizing it made the content.
Students generally noted how much it added to the course, without being an overly burdensome
activity. He also notes that the novel provided an anchor during the lecture to draw on topics that
shaped the development of quantum theory, such as the fleeing of Jewish physicists due to the rise
in antisemitism and policies of genocide under the Nazi regime, the reception of refugee scientists
by other countries, the nuclear arms race, and the resulting push for nuclear disarmament led by
nuclear physicists.

Among the comments offered by his students are the following:

• “This comic-novel book gave me good insights of the life of Niels Bohr, and his discoveries
play an important role in recognition of the physical world. This book provided me a steady
foundation, a step stone in my understanding of physics history along with the magnificent
impact from early physicists to our daily life.”

• “...even though [Bohr] seemed to get an audience, in the end his pleas for peace and commu-
nication across allied lines were to little avail.”

• “Niels didn’t have the words to accurately communicate the ideas that he wanted to express
in lectures. No one had the words to describe quantum mechanics in a way that was widely
accepted.”
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Through this work, Ho’s students were highly engaged in the reading and discussion of this graphic
novel, and it resulted in a deeper more contextualized understanding of the related physics concepts.

4 Graphic Novels for Mathematics
In her advanced geometry course at Marian University, Sarah Klanderman used the graphic novel
Who Killed Professor X? written by Thodoris Andriopoulos and illustrated by Thanasis Gkiokas.
This book details the investigation into the mysterious death of the fictitious Professor X. Each of
the principal characters is a famous mathematician, and thus the alibis detailing their innocence
are communicated using mathematics, including skills from algebra, pre-calculus, and geometry.
Klanderman’s class included a total of five secondary mathematics majors, and she assessed that
these pre-service teachers would benefit from a deeper discussion of geometric proof, including
topics typically taught at the high school level. To that end, each student was given a copy of
the graphic novel to read at their own pace and then selected characters to present on, both
as real historical figures, detailing their biography as well as mathematical contributions, and to
justify their innocence in the story by explaining the geometric proof for their associated witness
statements. A description of this project is included in Appendix 2.

After their presentations, students suggested ways in which they could incorporate the graphic
novel in their own teaching in the future. These ideas included weekly reading assignments from
the graphic novel, discussion of a specific mathematician’s life, small group work to solve a witness
statement linked to a geometric proof, and weekly quizzes in which their students would be required
to prove the “claim of the week.” The advanced geometry students also identified a critical short-
coming of the graphic novel related to the sample of mathematicians from history that appear in
the story as potential suspects: all are Caucasian and all except Sophie Germain are male. Overall,
each of the five pre-service high school mathematics teachers enjoyed using the graphic novel and
expressed an interest in using this and similar graphic novels in their future teaching. They also ap-
preciated the opportunity to learn more about famous mathematicians and their key mathematical
contributions and voiced curiosity about contemporary mathematicians and their research.

At Calvin University, Jim Turner used the same graphic novel in his advanced geometry course.
A total of fifteen students were enrolled in the course, including eight secondary mathematics
education majors. The course incorporated weekly lab sessions, most of which focused on Geogebra-
based learning activities. However, in place of Geogebra during two of these lab sessions, he used
the graphic novel and had students working in groups of three or four to analyze witness statements
linked to geometric concepts. In addition to the stated Euclidean geometry context, students were
asked to view the proof of the witness statement from a neutral geometry perspective in which
hyperbolic geometry as well as Euclidean geometry would be valid options. Recall that neutral
geometry assumes the existence of parallel lines (though not the specific number) passing through
a point not on a given line; it also assumes the validity of the SAS theorem for congruent triangles.
In particular, either hyperbolic or Euclidean (but not elliptical or spherical) geometries meet these
conditions. Turner notes that the results of these lab sessions were mixed. While students enjoyed
using the graphic novel and analyzing the witness statements, most were quick to believe that
certain strictly Euclidean propositions (e.g., that similar triangles have proportional side lengths)
were also neutral propositions, but were unable to provide plausible arguments to that effect. On
their course evaluations, multiple students mentioned their enjoyment of the graphic novel and its
connections to the course material.

In Dave Klanderman’s methods of teaching middle school mathematics course at Calvin University,
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students were provided with a copy of the same graphic novel as part of the take-home final exam.
Like the pre-service teachers at Marian University, several students identified issues related to the
lack of ethnic and gender diversity. One student noted the inclusion of Muhammad ibn Musa
al-Khwarizmi in the graphic novel, but he was not included as one of the witnesses and therefore
did not have a mathematical alibi statement. Klanderman earlier had provided students access to
two posters with a total of over 20 women and non-white mathematicians that had been compiled
by another Calvin student as part of a summer research project funded by the National Science
Foundation. Some of the students noted that incorporating a more diverse set of mathematicians
as part of a biography assignment would offer one way to address this concern. Among the written
responses from these students are the following excerpts:

• “I would love to be able to show students these problems, possibly as a once a week activity
where I put the book up on a document camera. If I wanted to keep the book hidden from
my students, I could use the problems as a challenge problem, maybe at the end of tests, then
students have a fun problem to work on while finished with the test.”

• “I would want to incorporate this in my math classroom because of how creative and different
it would be for a math classroom. I never experienced anything like this. I think I would
rather use it in geometry than algebra, but both would be great. The book acts as an extra
resource for students to understand the content in a different, creative way.”

• “This is a great way to bring in review from algebra and see how it intertwines with geometry.”

• “For geometry it would be very easy to go through reading the book, but then stop at the
specific geometry examples that would be applicable to one’s own class and curriculum.”

• “Formative assessments would come in the form of the teacher observing students as they work
independently and with others. The discussion would also be a form of a formative assessment.
At the end of class students could turn in an exit ticket explaining why the mathematician
was innocent or guilty along with supporting work as a summative assessment.”

• “The teacher could have the students explain how they solved the problem, but it is still
possible that they just read and understood the back of the book rather than actually figuring
it out on their own. One way this could be helped is if the author published both a teacher’s
edition of the book, which had the answers, and a student’s edition of the book, which did
not have the answers.”

• “I also want to connect the ideas that this is a graphic novel about and using mathematics –
a direct connection to my own background as an English major. I want students, regardless
of how many books we have, to see the value of combining disciplines. Completing the math
in this book was fun because it had story connected to it that was more than just surface
level. I could have copied and pasted the problems without the story, and the problems would
have been normal, albeit a little more advanced, than we normally complete. But when we
combine the elements of English literature and Mathematics, we can create something new
and exciting that opens a whole new realm of possibilities.”

It is interesting that the students identified a variety of ways to use the graphic novel, including both
formative and summative assessments, and at least one highlighted the potential interdisciplinary
nature of the graphic novel that blurred the boundary between literature and mathematics. Overall,
all three classes utilized Who Killed Professor X? in university level mathematics and mathematics
education courses. Students were engaged with the graphic novel, and the future high school
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teachers saw potential for its use in the teaching and learning of both algebra and geometry. It
is also worth noting that a high school mathematics teacher in the Chicago Public Schools (CPS)
system recently used this graphic novel in his geometry class. He reported a high level of engagement
with the graphic novel and the mathematical witness statements.

Other graphic novels may also play an important role in the teaching and learning of mathematics
at the undergraduate level as well as other grade levels. One category of such graphic novels
are Manga books that focus on specific topics in mathematics or statistics, including calculus,
linear algebra, and introductory statistics. As an example, Shin Takahashi’s The Manga Guide to
Statistics offers readers an engaging discussion of many concepts that are typically covered in an
introductory statistics course. Although we do not have data from the use of this graphic novel
at the college or university level, we have feedback from a former student who used the book with
both middle school and high school students in Chicago Public Schools during his student teaching
internship. He used The Manga Guide to Statistics during lessons in which measures of central
tendency and different data types were introduced. He reported that several students shared his
own interest in Manga books, and these students were especially engaged in the use of this graphic
novel. Interestingly, he also discovered that middle school students were generally more willing to
spend the time analyzing the images and the supporting text than the high school students.

5 Conclusion

This article has identified multiple graphic novels that could enhance the teaching and learning of
both physics and mathematics at the university level. Some of these same graphic novels might
prove useful to middle school and high school teachers of the same disciplines. These graphic
novels can enhance the understanding of specific concepts, explain some concepts in greater detail
and in a way that links text and images, and can excite readers to pursue careers in these same
disciplines. As mathematics and physics teachers, we should focus on the big ideas, key concepts,
and necessary skills of our respective disciplines in our classroom teaching. Although graphic novels
provide helpful modalities for engaging the readers and promoting deeper understanding, we should
be cautious when selecting these materials for classroom use to ensure that larger pedagogical goals
and objectives are met. Nonetheless, these graphic novels offer the potential to positively impact
the learning of our students. This classroom-based research will inform a larger writing project that
documents the potential role of graphic novels in the teaching and learning of science, technology,
engineering, and mathematics (STEM) at the middle school, high school, and university levels
(Boerman-Cornell, Ho, Klanderman, and Klanderman, in press). Interested readers are encouraged
to visit a related website gnclassroom.com for more resources.
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Appendix 1: PHYS232L: Exploring Entropy Activity (Jason Ho)

Discovering Entropy
Objectives

• To explore different definitions of entropy.

• To simulate entropy using dice sets and analyze the outcomes using a histogram.

• To understand the history of entropy through the lens of historical physicists and chemists.

1 Introduction

There has long been discussion around what entropy is conceptually, not just mathematically.
Here, we’ll spend some time thinking about some different definitions you may encounter. This
lab will be more of a problem-solving session than a traditional lab. Please write your reflections,
observations, and data down in your lab book or on a separate sheet of paper—these will be handed
in and counted towards your grade for this lab.

2 Materials

• Excerpts from Max the Demon vs. Entropy of Doom

• Microsoft Excel

• A set of dice

3 Reading & Reflection

1. Read the following thought experiment proposed by James Clerk Maxwell in 1867:

. . . if we conceive of a being whose faculties are so sharpened that he can follow every
molecule in its course, such a being, whose attributes are as essentially finite as our
own, would be able to do what is impossible to us. For we have seen that molecules
in a vessel full of air at uniform temperature are moving with velocities by no means
uniform, though the mean velocity of any great number of them, arbitrarily selected,
is almost exactly uniform. Now let us suppose that such a vessel is divided into two
portions, A and B, by a division in which there is a small hole, and that a being,
who can see the individual molecules, opens and closes this hole, so as to allow only
the swifter molecules to pass from A to B, and only the slower molecules to pass
from B to A. He will thus, without expenditure of work, raise the temperature of B
and lower that of A, in contradiction to the second law of thermodynamics

With your group, answer the following questions:

• Maxwell describes that individual molecules travel at different velocities, but their aver-
age is always uniform. What measurable quantity is he describing here?

• Draw a set of diagrams that depict the experiment that Maxwell describes.
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• How does this thought experiment violate the second law of thermodynamics? What
would you observe if the experiment could be carried out? (if you’re having trouble,
think in terms of temperature.)

2. On Canvas, read the excerpts from the graphic novel Max the Demon vs. Entropy of Doom
by physicist Assa Auerbach and illustrator Richard Codor. We’re jumping into the middle of
the story, but you can grab the full copy from the library (it’s on reserve for this course) or
borrow my copy in the lab if you’d like to read the full work. Here’s the synopsis:

Max, a character based on the mythical Maxwell’s Demon, is sent on a mission to
help save earth from environmental disaster. First, Max must learn about energy,
heat, and entropy from the historical giants of science. Along the way there is
villainy and near catastrophe.

4 Entropy as a Mathematical Relationship

3. Entropy S is fundamentally defined by the equation

dS = dQ

T

where dQ is a small amount of heat in joules, and T is a temperature in Kelvin. Using this
differential definition of entropy, consider the special cases of the first law of thermodynamics
we considered in class. In each case, what would you expect the entropy to be? Assume an
ideal gas, and fully simplify in each case (i.e., do the integrals when possible).

(a) Adiabatic processes: dQ = 0, dEint = dW

(b) Isochoric (constant volume) processes: dW = 0, dEint = dQ

(c) Cyclical processes: dQ = 0, dQ = dW

(d) Free expansions: dQ = dEint = dW = 0

5 Entropy as Unavailable Energy

4. One of the earliest definitions of entropy came from Lazare Carnot and his son, Sadi Carnot
(who is referenced in Max the Demon). In thinking about mechanical systems (for example,
pulleys and inclined planes), Lazare Carnot observed that energy is always lost through
friction or other dissipative forces. Sadi Carnot later extended this idea in his development of
engines, and hypothesized that even in an idealized engine, some heat would always be lost
One way we can think about entropy then is as unavailable energy. Imagine a piston con-
taining a gas at a certain temperature T0. If thermal energy is added to the gas, raising its
internal temperature to T , the gas will do work on the piston and start pushing it upwards.
If you had the power to arrange the direction and velocity of the particles in the gas in order
to maximize the efficiency of the gas pushing on the piston, how would you arrange them?
How do you think they are arranged in reality? Sketch each situation as you discuss it with
your group.

ACMS Journal and Proceedings Page 151 23rd Biennial Conference



6 Entropy as the Arrow of Time

5. Entropy is also sometimes looked at as a way to anchor the direction that time flows. One of
the yet unanswered questions in physics is, why does time have a direction? At the microscopic
level, if time were to reverse, it is thought that most of the laws of physics would remain the
same—the mathematics that describe the microscopic level would not change. However, at a
macroscopic scale, we would immediately know if time were reversed.
Many forces have a symmetry in time; for example, gravity is a time-reversible force. If you
took a video of a ball being thrown up in the air and being caught again, the physics of that
experience would not look very strange if you watched it in reverse. But, if we were to drop
a ball on the ground and record a video of it bouncing, the physics of that experience would
look odd if we were to watch it in reverse. What other examples of time-symmetric forces
can you come up with? What examples of time-asymmetric forces (or phenomenon) can you
come up with?

t t

Figure 2: Based on a figure from a MinutePhysics video by Sean Carroll

6. Given the two snapshots of a system of a gas in a closed and insulated box below, which way
is time flowing? Justify your decision with your group. How does this idea connect with the
definition of entropy as chaos or as unavailable energy?

Figure 3: Taken from Energy Education (https://energyeducation.ca/encyclopedia/Entropy)

7 Entropy from a Statistical Perspective

7. Entropy can be described as the amount of disorder or chaos in a system, but this doesn’t
quite get at some of the nuances of what entropy represents. In this activity, we’ll explore
the statistical side of entropy. In statistical mechanics, the thermodynamics we are in-
vestigating in this course are explained through the motion of atoms and molecules (when
thermodynamics was first being developed, the concept of an atom had yet to be developed)
Consider the coin toss described in the excerpt from Max the Demon. A single coin toss
carries a random probability, but if we flip the same coin many times, we reach a predictable
result—half the time the coin will land on one side, and half the time it will land on the other.
What other examples can you come up with where an individual outcome is unpredictable,
but a large number of outcomes is predictable?
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8. In statistical mechanics, entropy S is defined in terms of the number of microstates W of a
system,

S = kB ln W.

How is a microstate defined in Max the Demon?

9. Consider a single dice (1d4, 1d6, or 1d8). What is the probability of any one number being
rolled?

10. Take a pair of four-sided, six-sided, or eight-sided dice (2d4, 2d6, or 2d8). Using your method
of choice (whiteboard, paper, Excel, etc.) tabulate all the possible values you can get by
adding the digits of the two dice together. Determine the multiplicity (or degeneracy) of each
value: how many different ways can you roll each possible value? What do you think the
most likely values are? Which values are the least likely?

11. Using the multiplicities, calculate the probability for each outcome you determined in the
previous step. If the dice behave exactly as you expect them to, what would a histogram of
64 trials look like? 128 trials? By hand or in Excel, create a histogram showing the theoretical
prediction of the dice behavior.

12. Using the two dice you chose, roll the pair of dice 64 times. Record the sum of each roll.

13. Plot a histogram of your results (either by hand, or in Excel). What is your most common
value? Is it what you expected? Check for any unexpected behavior in your histogram.
Would you expect the results to change if you took more data?

14. Roll your pair of dice another 64 times (perhaps let your partner do it this time). Record the
sum of each roll.

15. Plot your combined results from steps 7 and 9 in one histogram. What changed?

16. Ludwig Boltzmann was the first to define entropy in terms
of microstates. As shown in Figure 4, his equation is en-
graved on his tombstone in Vienna. Boltzmann’s construct
determined that a highly ordered state (for example, one
with all molecules traveling in the same direction) was the
most improbable configuration of a system. In other words,
the more “disordered” or chaotic a system was, the more
likely it was to occur. How does this connect with the other
definitions we’ve discussed? How much energy would be
unavailable to be used as work in a highly ordered system?

Figure 4: Ludwig Boltzmann’s
tombstone. (Source: Daderot
at English Wikipedia)

8 Conclusion

To finish the exercise, fill out this short survey on how you reacted
to the incorporation of a graphic novel into this lab activity:
https://forms.gle/QoBgzjZwFGtEr99Y8
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Appendix 2: MAT-330: Graphic Novel Project (Sarah Klanderman)

Purpose: In this class we will be using the graphic novel Who Killed Professor X? to see how
geometry can be used to solve the mystery of the book, learn about the history of various mathe-
maticians, and explore ways in which alternative media such as graphic novels can be incorporated
in your future teaching as well.

Process:

1. Each student will choose two mathematicians from the lists below. You are welcome to read
through the graphic novel prior to choosing if you would like to make an informed decision
(although there are no bad choices).

2. Read the graphic novel, spending time to determine how to do each of the problems given for
every defense.

3. Create a presentation of the solution of your first mathematician’s defense using geometry.
Make sure that you are able to answer any questions you may receive about the solution.

4. Research the life and history of both of your mathematicians to provide historical vignettes
about each mathematician in your presentation.

5. Create a lesson plan or proposal of how you could utilize this graphic novel (or other graphic
novels) in your own teaching in the future. Focus on how you can use it for enrichment and
motivation for your own students to study math.

Lists of Mathematicians

Select one of the following mathematicians. Then present the geometry involved in that mathemati-
cian’s defense in the graphic novel, and also provide an historical vignette of that mathematician’s
life.

•Constantin Carathéodory •Pierre de Fermat •Pheidias

•Blaise Pascal •Isaac Newton •René Descartes

In addition, choose one of the following mathematicians and outline that person’s biography (but
not necessarily provide the solution to their Who Killed Professor X? defense).

•Leonhard Euler •Carl Friedrich Gauss •Bernhard Riemann

•Marie-Sophie Germain •Évariste Galois •Gottfried Wilhelm Leibniz

•David Hilbert •Kurt Gödel •Augustin-Louis Cauchy

•Jean Baptiste Joseph Fourier •Siméon Denis Poisson
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Abstract

For more than a century, both Christian and non-Christian scholars have questioned large
numbers mentioned in the Bible, especially those in the book of Numbers about the population
of Israel in the Exodus. Many of them view those numbers as fictitious because of the seemingly
unreasonably large size of them. There are also Christian scientists, such as Sir Colin Humphreys
[6], believing that the scriptures were misinterpreted and trying to use mathematics to “fix the
problem” about these large numbers in the Bible. This article provides a different angle viewing
the numbers of population to justify the likelihood of the seemingly unlikely large numbers
using the exponential growth model of population. This attempt, on one hand, may open more
space for the teaching and learning of intro-level mathematics courses in college. On the other
hand, it shows that mathematical knowledge and skills can be powerful for us to debunk the
“this-is-not-possible” challenges, rather than doubting, about what is written in the Bible.

1 Introduction

So all those listed of the people of Israel, by their fathers’ houses, from twenty years
old and upwards, every man able to go to war in Israel—all those listed were 603,550.
(Numbers 1: 45-46, ESV)

It seems much easier to claim the errors of the Bible than really believe it. One of the questions
bothering many people is about the large numbers in the book of Numbers. As shown in verses
45 and 46 in Numbers 1, the number of war men (twenty years old ad upwards, who are able to
go to war) in the first census of the Exodus is 603,550. Later on, after forty years of wandering
in the wilderness, the second census recorded in Numbers 26 shows a similar number (601,730) of
the population of Israelite war men. It is commonly accepted that, the number of about 600,000
war men implies a total population in the Exodus (including men, women, and children) of at least
two million [6]. However, as Bishop J. W. Colenso argued in his influential book, The Pentateuch
and Book of Joshua Critically Examined (published in 1862), the number of two million seems
“well beyond the bounds of what may be regarded as historically probable” for many readers of the
Bible [2, p. 450]. Following Bishop Colenso, the conservative biblical scholar J. W. Wenham once
addressed more bluntly,

It is notorious that the Old Testament in many places records numbers which seem
impossibly large [10, p. 19].
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Too large to be true—this indeed has troubled many people including Old Testament scholars and
Christian scientists for a long time. J. W. Wenham and many other Christians have specifically
examined this issue to defend their faith about God, His Word (the Bible), and the Christianity.
Besides the commonly accepted claim of possible “textual corruptions” of the Holy Scriptures
copied from generation to generation in thousands of year [10, p. 21], another persuasive argument
emerging is that the extremely large numbers probably came from the misinterpretation of a Hebrew
word root, “a-le-f ”1 in the two census listed in Numbers 1 and 26. As argued by Wenham, this
Hebrew word has at least two different meanings, one of which is the exact numerical value of
“thousand”, and the other is used in Old Testament as a social unit, such as “family”, “clan”,
“troop”, etc. Proposing that in the two censuses “a-le-f ” should mean a social unit with a much
smaller size than one thousand 2, Wenham concluded that the reasonable number of the total
population of the Exodus should be about 70,000.

Assuming the same possible misinterpretation of this Hebrew word, the Christian British physicist,
Sir Colin J. Humphreys has conducted a mathematical “decoding” on the “apparent error” of large
numbers shown in Numbers 1 and 26 [6, p. 196]. His analysis drew on several more deduced
assumptions, such as the average number of males in a regular Israelite family at the time of the
Exodus, the ratio of Israelite male population to Levite male, and the ratio of Levite male to first
born Israelite male at that time. After a seemingly rigorous mathematical analysis, he concluded
that “as a round number, the total of men, women and children at the Exodus was about 20,000”
rather than the figure of more than 2 million suggested by the census mentioned in the book of
Numbers [6, p. 211].

Besides Sir Humphreys’ work on this so-called “mathematical conundrum” [2], a group of biblical
scholars have inherited the way of interpreting the Hebrew word “a-le-f ” not as the exact number
of 1000 but a smaller social unit and claimed that we should do a “hyperbolic interpretation” [4] of
those large numbers, considering them as a rhetorical way of speaking commonly found in ancient
Near Eastern. For instance, David M. Fouts, a Bible professor, claimed that we should interpret
the large numbers in this way for the sake of removing the “stumbling block for accepting the
Biblical accounts as legitimate records of history” and stopping people “questioning the integrity
of the record” [4, p. 387].

Including aforementioned, there are more than several ways of interpreting the seemingly unrea-
sonably large numbers in the book of Numbers through the years after Bishop Colenso’s work in
the 1860s (e.g., [2], [7]). No matter what ways they were taking, the arguments aforementioned
were built on the same assumption: the large numbers can not and should not be true because
they are so unlikely to be true and so unreasonable that they have to do some work to fix this
problem. However, I would argue that the work they have done were not just “fixing” the problem;
but, more importantly, they were affirming the existence of the problem by trying hard to solve it.
In the sections below, I try to challenge this assumption by asking: Are these numbers too large to
be true? What if we assume that they are possibly historical records? Are they really unreasonable?

Guided by these questions, I designed a problem of exponential modeling (In Section 2) using the
numbers in the Bible for the intro-level college algebra course I taught in Fall 2021. Mathematically,
the exponential model itself is surely not the best model for the estimation of the population in

1I translate the Hebrew word to English letters following the way that the Jewish mathematician Haim Shore does
in his book, Coincidences in the Bible and in Biblical Hebrew [9].

2In fact, according to a personal conversation with a Hebrew professor, Dr. Charles Lu, when the “a-le-f ” shows
after exact numbers in Hebrew (as it is in Chapter 1 of the book of Numbers), it does mean “(one) thousand”.
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400 years. Pedagogically, however, it would be a good start to develop students’ critical thinking
on mathematics modeling and the reasonableness of a mathematical solution when taking into
account more information of real life. Following that, I argue that the analysis on reasonableness
not only provides more opportunities for students to authentically experience exponential models;
it also helps setting up the necessity of a more complicated mathematics model—a logistic model
(in Section 3). Furthermore, the possibility of analyzing the same story in different models provides
an opportunity for us to reflect on and then challenge the reasoning people have made based on
reasonableness (or not) heavily relied on personal experiences. Is it really possible for us to justify
either the reasonableness or unreasonableness of the numbers in the Bible? The last section of
this paper I try to go back to the author of the Bible, the LORD, and ponder on the purpose of
the Holy Scripture. After that, I conclude this paper with the power of mathematics as a tool to
stretch our personal feelings and draw us closer to the Almighty God.

2 Connect the Big Numbers with Exponential Model

It should not be a surprise that the big numbers are usually put on the spot when people are
questioning the inerrancy of biblical record of the historical event of the Exodus [2], although this
was not my personal experience with the Bible in the last six years as a new re-born Christian. It is
probably because I was too amazed by the stunningly rich contents of the Bible to really scrutinize
the numbers in details in the first five years of being a Christian. Fortunately, as a mathematics
educator, I got asked and forced to think about those large numbers. It was in Fall 2021, while
I was in the midst of teaching college algebra at a public university, which is the lowest level of
credit-bearing college mathematics course for non-STEM (Science, Technology, Engineering, and
Mathematics) majors. Someone in a Chinese bible study group brought forth the following question:
Is it possible for the population of Jacob’s family growing from 70 people3 to more than 2 million
after 430 years4?

This reminded me of the exponential model of population growth in my college algebra class. It
is not hard to make up a typical practice question of this model based on the information about
Jacob’s family given in the Bible, as shown below:

Assume that the growth of the population of Jacob’s family after t years of the start
of its record can be modeled by P (t) = P0ert, where P0 is the initial population of the
family.
1) If the initial population of this family was 5, and after 53 years, the family had grew
up as a family of 705, what was the annual rate of growth of its population in these 53
years?
2) The family went down to the land of Egypt after these 53 years with a population
of 70. If hereafter the population of this family kept growing at the same annual rate
of growth, after how many years would the family reach the population of 2.5 million?
3) If hereafter the population of this family kept growing at the same annual rate of
growth, what would be the population 430 years after they wend down to Egypt?
4)If after 430 years, the family population has grown from 70 to a population of 2.5
million, what should their annual rate of growth be?

3Exodus 1:5
4Exodus 12:40
5Genesis 47:9
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In Part 1) above, Jacob’s family is assumed as originally having five people: Jacob, his two wives,
and two concubines, which gives the initial population P0 = 5. In Genesis 47:9, we are told that
Jacob’s family had 70 people down into Egypt, which gives P (t) = 70. The years for the family
developed to 70 people is assumed as t = 53, the difference between the age of 130 when Jacob went
down to Egypt with the family (Genesis 47:9) and the age he fled from home, which is commonly
accepted as 776. Substitute these information into the model, soon we can solve the average annual
rate of growth is r = 0.04977 = 4.97%. Deduced from a commonly accepted mathematical model
and two fairly small numbers of population (5 and 70), I would argue that this result should be
considered as a reasonable one, although there may be some arguable points about the potential
over-simplification of an exponential model.

Once the reasonableness of the annual growth rate of the family, 4.97%, is settled, I may use it to
estimate the population of the family after 430 years based on the exponential model. But before
doing so in Part 2) and Part 3) , I should justify if the population growth of this family would
be able to keep following the same model as described in Part 1), even after they went down to
the land of Egypt. It is worth noting that, before they went down to Egypt, the life of Jacob’s
family in Canaan was far from “prosperity” if we consider the scandalous events that happened in
the family one after another, such as the slaughter at Shechem (Genesis 34), the deaths of Judah’s
sons (Genesis 38), Joseph sold by his own brothers (Genesis 37) and so on. As summarized by
Jacob when he talked to the Pharaoh, “few and evil have been the days of the years of [his] life”
(Genesis 47:22) before they went to Egypt during the severe famine in all the land. Now if we
take into account the verses in the Bible saying that the Israel “multiplied greatly” (e.g., Genesis
47:27, Exodus 1:7, 20) after they settled in Egypt, where they possessed ”the best of the land, in
the land of Rameses, as Pharaoh had commanded” (Genesis 47:11), it should not be unreasonable
to assume that the growth of this family’s population would keep the same, if not faster, in Egypt
as before. That is, using r = 4.97% would not overestimate the population of the family based on
the exponential model.

According to the exponential growth model with r = 4.97%, the result of Part 2) is about 211
years. That is, if we agree that in Egypt Jacob’s family would be growing larger and larger in a
speed at least not slower than before, it would only take the family about 211 years (less than half
of the 430 years) to increase to a population of 2.5 million, which I purposefully set as a number
“over 2 million”. Now evidenced by the analysis according to this model, it is very likely that
the population of a family could increase to a “unreasonably large” number of over 2 million after
hundreds years. Following this, the Part 3) is more about my own curiosity and amusement with
a mathematics model: What would the model tell us about the population if the prosperity of
Jacob’s descendants really lasted for 430 years? The answer of it is 1.33 × 1011, or 133 billion!
Comparing this humongous number produced by the mathematical analysis done above, it may be
more natural to question,“Why the population in the Bible is NOT this large?”, rather than simply
assuming the numbers recorded in the Numbers as too large to be reasonable.

One response to the question of “Why the population in the Bible is NOT this large?” may be on
6Here is one of many resources about how to get this number using the information given in Bible:

http://hiswordsarepure.com/TheLifeOfJacob.htm. There are some other views on the age of Jacob when he fled
home. However, even if we take the age of 40 (Genesis 26:34) as the time Jacob fled home, and then assume the
time for the family growing to 70 people as 130 − 40 = 90 years, according to the exponential model, the annual
growth rate would be 0.0293=2.93%. If we compare this to the result of Part 4), it is still large enough to justify the
likely-hood of the over 2 million population of Exodus.

7To not overestimate the population, the decimal is rounded down to the ten-thousandth place. For the decimals
hereafter are the same.
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the growth rate8. For example, Is it reasonable to keep the population growth rate as 4.97% for
such a long time? If not, what is the average annual growth rate that could make the 2.5 million
population in 430 years? Part 4) was designed with the question on the growth rate of 4.97% in
mind. If we accept the population of 2.5 million at the time of the Exodus9, which is after 430 years
of growth, and we may ask: What should the annual rate of growth be to make the population
reach 2.5 million? Mathematically, this is exactly same type of question as part 1). The information
of P0 = 70 and P (430) = 2, 500, 000, gives us r = 0.0190 = 1.9%. This means that, to increase
to a population of 2.5 million in 430 years, the growth rate only needs to be 1.9%. Compared to
the growth rate of population in the world today, which is 1% [8], the rate of 1.9% seems very
large. However, if we look back a little further at the last five decades, according to the data from
Dr. Max Roser and his colleagues [8], we may easily find more than several countries in the world
having reached a growth rate over 2.0% for a period at least about 10 years. For example, China
from 1964 to 1974, India from 1958 to 1995, Bangladesh from 1975 to 2000, just name a few. Even
the United States peaked the growth rate in the 1950s as about 1.6%.

With regard to the reasonableness of a growth rate of 1.9%; I cannot say much about other countries;
but I do know that the period of 1964-1974 in China definitely cannot be viewed as a good time for
Chinese people in a country taken over by the Communist Party organizing political movements
one after another all over the country from 1957, the start of Anti-Rightist Campaign, to 1976, the
end of the Great Cultural Revolution. If the growth rate of the population in China was able to
maintain 2% for about 10 years in that tough societal environment, why this could not happen for
the Israel people before the Exodus? To this point, the mathematical analysis using exponential
model shows very well that, the “unreasonably large” numbers recorded in the book of Numbers
might not be as large as it should be if the population really follows the exponential model. In
other words, according to the exponential growth model, the claim of the “unreasonableness” of
these numbers may be supported by the fact that they are not large enough, rather than too large.

3 Further Exploration and the Pedagogical Meaning

The topic of exponential growth has been documented as an important but difficult one in the
literature of mathematics teaching and learning [3]. Researchers have noticed that the co-variation
of the parameter (annual rate of growth in this case) and the population increasing exponentially
is not as obvious as that of the slope and the change of the height of a line. Even worse, when the
dependent variable like population increases exponentially, it is very common that an instructor (or
author of a textbook) adjusts the units on the two axes to make its graph more presentable. That
is, even the graphic representation of an exponential growth is not so accurate as a line representing
a linear growth. The learning of exponential and logarithmic functions became so hard when even
the graphic expression cannot offer much clue for students to experience these functions, especially
for those in the lowest level of credit-bearing mathematics courses (such as College Algebra).

For the students who just made it through the developmental mathematics contents and got into
college algebra class, it is not easy to understand how an exponential growth would be significantly
different from a linear growth. It is even harder to realize how the little change of the parameter
can make a huge difference in the population in a longer term. The problem in Section 2, especially
the comparison of Part 3) and Part 4) may naturally draw students’ attention on the feature of

8Surely there are a lot more to discuss, such as the capacity of the land and the wilderness of Sinai. But this is
beyond the scope of exponential growth model and I will discuss this briefly in Section 4 of this paper.

9Hopefully this may not be considered so unreasonably large compared to the 133 billion.
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exponential model. We may remind students by asking them, Is it okay to use the same growth
rate of the first 53 years to model the next 430 years? Why or why not? How much would the error
of the population be if we choose different growth rates? These questions may open up more space
for a multi-angle discussion on the exponential model.

More than just focusing on the content of exponential model, at the time when I made up the
problem in Section 2 as a practice problem, I intended to use it to show my students the limitation
of a simple mathematics model10. There is a large body of literature in mathematics education
critiquing how far the final, perfect product of mathematics knowledge is from the real life of the
real world. With this in mind, the design of the problem was not for getting some correct historical
numbers at all.11 On the contrary, encouraging students playing with those numbers using the
exponential model, I attempt to focus on how the problem may bring students more opportunities
to gain a deeper understanding on the exponential growth model of population in particular and
mathematics modeling in general.

When talking about mathematics modeling, the examples provided in textbooks are usually very
well designed for a purpose to show how well the mathematics model may perform in a certain
situation. This is especially true in lower level mathematics courses such as college algebra. Dif-
ferently, the problem presented in the last section ends up with some unpredictable numbers for
students and may well challenge their previous understandings of the model and the reasonableness
of numbers. That is, the practice of using the exponential model in that problem is more about
helping students realize that we should be very cautious with the accuracy of a seemingly pretty
mathematical model, especially when we attempt to describe the change of a variable in a longer
term. Furthermore, it also may draw students attention on the point of “reasonableness”: What
do we usually mean by “reasonable”?

In Part 1) of the problem, the growth rate of population, 4.97% may seem very reasonable because
it is deduced from a well-developed mathematics model and two fairly small and then reasonable
numbers. However, does the same growth rate still seem reasonable after we solved Part 3) with
a number of 133 billion? Probably not any more. Similarly, does the growth rate of 1.9% seem
reasonable? The answer may be YES, if it is only compared to the 4.97%. The answer may
be changed if students are reminded that today in the Unites Sates the growth rate of the total
population is only 0.4%! However, they may change their idea again to claim that 1.9% is very
reasonable if they consider the argument I made in the last section about the 2% growth rate of
Chinese population during 1964 to 1974. The back and forth here is aimed to show how much the
judgement of “reasonableness” is relied on our personal experience with given information. And
therefore, we want to be very careful when we claim some result is “unreasonable” based on our
feeling or personal experience.

On the other hand, would the result deduced from mathematics reasoning always be more reliable
than personal experience? Not really. For example, the number of 133 billion we got from Part
3) of the problem sounds obviously unreasonable if we compare it to the world population, which
is close to 8 billion today. But, why this is “obviously unreasonable”? Although it is beyond the
scope of teaching and learning exponential model, it is worth noting that the feeling of “obviously

10I only use this problem as an extra out-of-class practice because the university that I currently teach is a public
state university.

11I had never thought the numbers in the Bible as not real historical numbers before I read Sir Humphreys’ article
arguing that the population of the Exodus should be 20,000 [6]. So, I truly felt and still feel that this would be a
very good example to show how real life usually does not happen exactly as a mathematics model would predict due
to many other complicated factors surrounding.
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unreasonable” comes from the feeling (rather than a solid understanding) of an important concept:
Carrying Capacity K, which is the maximum population size that a land may sustain. So, this
may be a great moment for an instructor to bring forth the logistic model of population growth
to take into account the parameter of carrying capacity of the land and make a better model.
Pedagogically, the capture of the feeling of either reasonableness or unreasonableness may always
be a great catalyst of new knowledge.

Interestingly, many scholars aforementioned in the Introduction claimed the “unreasonableness” of
the large numbers of the Exodus population based on the exact same feeling—the doubt of the
capacity of the land for the Israel family settled in (e.g., [4]). However, this does not justify the
“unreasonableness” they claimed. The carrying capacity K of a logistic model is usually assumed
based on one’s observation, precious experience, or scientific experiments. On the carrying capacity
of a certain land, someone from New York City may have different idea based on his/her life style
from those in a different living environment. By saying this, I by no means want to undermine the
strength of the logistic model or any mathematics model for prediction or description of certain
social and/or scientific events. On the contrary, my point is that it could be more powerful if we
are more careful with the choice of the parameters.

Nevertheless the point here is that, rather than claiming that the large numbers are unreasonable
and never using them as trustworthy information, the acceptance of them in fact opens much more
space to sustain beneficial discussions on the co-variation of the exponential model in particular
and then the fundamental understanding on mathematics modeling in general. That is, the purpose
of discussing the population of the Exodus is not to prove that the numbers are the real historical
fact about how many Israel people really were in the event (which probably no one in the world
can really prove), but to open up the possibility of the existence of a seemingly unreasonable event.

4 Significance of Mathematics for Faith in God

Here in this paper discussing the exponential model and logistic model of population growth is by
no means an attempt to “prove” the accuracy of the numbers recorded in the book of Numbers.
After all, the Bible is a book about Him and His miraculous work in the history of Israel and in
the world. As pointed out by the Dutch theologian Herman Bavinck12:

Holy Scripture has a purpose that is religious-ethical through and through. It is not
designed to be a manual for the various sciences. [...] In all the disciplines that are
grouped around Scripture, our aim must be the saving knowledge of God. For that
purpose Scripture offers us all the data needed. [1, p. 444]

That is, the large numbers in the book of Numbers are there to serve the purpose of revealing
necessary and sufficient knowledge of the Almighty God, rather than part of an encyclopedia. So,
Bavinck reminds us that we should not use the criteria that we have used in scientific disciplines
(such as mathematics, astronomy, chemistry and so on) to examine the Holy Scripture, where the
LORD reveals what we should know and conceals what we need not to know. As it was said, “The
secret things belong to the LORD our God, but the things that are revealed belong to us and to
our children forever” (Deuteronomy 29:29).

Surely there is no way for us as human beings to “prove” the accuracy of the numbers mentioned
there using mathematical skills or knowledge. Does this mean that we should never make connec-

12I would like to express special thanks to the reviewer who brought the work of this theologian to me.
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tions between mathematics knowledge and the contents in the Bible? I would argue that, although
“the Scripture does not satisfy the demand of exact knowledge in the way we demand it in mathe-
matics” [1, . 444] , the incapability of human knowledge is not a reason for us to separate His Holy
Scripture from disciplines such as mathematics13. Even though I don’t agree with the result of the
mathematical work done by Sir Humphreys [6], he does remind me of what I can do as an educator
using mathematics as a powerful tool.

Nowadays, after God has been canceled out from public education for about a half century, it is
more important to open our next generations’ mind toward the possibility of the existence of an
Almighty God rather than to “prove” it to them, which in fact is an impossible mission for us as
human beings if we truly believe in Him as the Almighty God that is beyond our comprehension.
The next generation must be willing to explore the possibility and know Him by themselves to
make the faith their faith, instead of their fathers’ (or teachers’) faith. Nowadays, not only those
aforementioned scholars trying to “fix problems in the Bible for God”, many scholars doing so-called
biblical studies assume that these “biblical narratives” were just man-made narratives impacted
by traditional activities and religious ideology (Ronald Hendel’s work is one of the examples [5]).
This happens especially in public institutions, where a large number of the next generations from
Christian families drift away from their parents’ faith.

This ideology of God as a man-made religious figure has been adopted widely in the world including
China through public education. I still vividly remember how astonished I was when I found Jesus
in a history textbook that my son brought home from his middle school14. It was the Winter of
2014, and I was not a Christian yet at that time. I said to myself, “Wow, I thought Jesus was
someone like Monkey King in the famous traditional Chinese fiction novel!” Thanks be to God, for
He found me and changed my heart indeed. Anyway, fortunately, the ideological portraits of the
Bible stories do not touch the numbers there. Maybe for them it is very obvious that the numbers
cannot be true and then there is no need to even argue about it as what the aforementioned
Christian scholars did. If we can point to our next generation that even the numbers there may
very likely be true, then why is it not possible that the Almighty God does exist?

More importantly, the exploration along the way described in the last two sections really humbles
me: as human being my understanding is always limited so much by my own previous experience and
it is almost impossible to describe accurately what we see, what we hear, and what we experience;
let alone to describe the Almighty God who is well beyond the scope of what we can see, what we
can hear, and what we can experience. With this in mind, it is very important to recognize that the
arguments about the “unreasonably large” numbers of the population of Exodus are mainly made
based on someone’s personal feeling of “hard to imagine” or “inherently improbable”. Furthermore,
when we let these feelings be the standard of reasonableness, more and more “unreasonableness”
in the Bible would follow up. For example, if we feel 20,000 more reasonable as the population of
the Israel people in Exodus, why would the Pharaoh be concerned so much by them “joining our
enemies and fight against us and escape from the land” (Exodus 1:10) at a time that Egypt had a
population of several millions? [11]

Once we try to use our own feelings to judge the narratives in the Bible as reasonable or not, it is
never a hard task to find plenty of unreasonable and questionable narratives in the Bible. They are

13Especially, think about what is said in Colossians 1:16 (For by Him all things were created, in heaven and on
earth, visible and invisible, [...] all things were created through Him and for Him.); God is not someone who cannot
satisfy the mathematical commands but the creator of them. We are usually the ones who have failed to comprehend
his work using mathematics or science.

14He was in a public school and he told me that his teacher did not teach that part at all.
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called “miracles”. When people, whether Christians or non-Christians, try to “fix” the problem of
unreasonableness, what they really convey to their audience is, “No. There is no way God can do
this.” Differently, I believe that “For nothing will be impossible with God”(Luke 1:37). At the same
time, as a mathematics educator, I believe that mathematics has a kind of power helping people
break the boundary of our personal, bodily experience, and then draw us closer to the Almighty
One using the ability of reasoning, which is also given to us by Him. Among all the subjects in
school nowadays, mathematics may be the most important subject in terms of its transcendental
power to break through our flesh-bonded human feelings and experiences.
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Abstract
After taking more traditional (standardized) tests as students, we tend to rely on such forms of
assessment as teachers. Over the years, I have been trying to find alternate forms of assessment
that afford my students a richer “exam” experience that is also more enjoyable. Ultimately, I
want my students to form deeper connections between something they know really well and/or
enjoy very much and the material we are covering in class together. So I, as a mathematics
professor, started transitioning my traditional final exam to a final project instead. In this paper,
we will go through my journey creating and adapting assessments that promote and encourage
student creativity. I will share rubrics and samples of student work as well as suggestions for
creating effective rubrics.

1 Introduction
Traditionally, one of the most common forms of assessment in a mathematics classroom is a com-
prehensive final exam. These finals are timed high-stakes assignments that do not support all of
our students equitably. Throughout my teaching career, I have further observed a majority of my
students cram too much studying into too small a window and, as a result, reach unnecessary levels
of stress. The National Council of Teachers of Mathematics (NCTM) encouraged K-12 teachers to
supplement exams with alternate assessment techniques such as portfolios and open-ended ques-
tions [1]. While attending conferences, I also started hearing from more and more colleagues about
using real world projects as an alternate form of assessment. I appreciated that projects would
alleviate the stress coming from the timed aspect of the traditional cumulative final. However, I
did not feel well equipped to find real world problems that would matter to my students. So I
decided to implement a creative comprehensive final project instead. I welcomed creativity in the
form of original problems and/or mediums that suited the individual’s interests. By giving students
choice in format, creative projects provide more entry points and make room for varied solution
strategies. So this form of assessment aligns with the NCTM Teaching Practice to implement tasks
that promote reasoning and problem solving [2]. Furthermore, students fit what they know into a
different context while creating their projects. So this type of assessment aligns with the NCTM
Teaching Practice to pose purposeful questions. Instead of spending time studying for a traditional
final, students spent time assembling what they had learned throughout the semester into creating
products that exemplified their knowledge. As a result, collecting and assessing creative projects
also aligns with the NCTM Teaching Practice to elicit and use evidence of student thinking. Like
those common cumulative final exams, each student created, and submitted, their own project for
all the ones discussed here.

All of my work implementing creative projects as alternate forms of assessment took place during
my six years of service at Lenoir-Rhyne University (LR). LR is a small private liberal arts college.
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Classes tend to be smaller to encourage deeper connections among faculty and students and promote
a more personalized learning experience. The classes discussed here ranged in size from 5 students
to 23 students.

2 Initial Approach: Holistic Final

In my first round of implementing creative projects in place of the more traditional comprehen-
sive final exam, students completed comprehensive final projects. This means that students were
expected to highlight everything they had learned throughout the semester.

To discourage last minute cramming and panic attacks, students wrote a proposal worth 100 points
towards the Project category of their final grades. As part of the proposal, students stated what
type of format they would like to use and why they selected it. Several medium suggestions
were explicitly provided in the assignment details. Students were also asked to articulate how you
envision including the information required for the project as detailed in the rubric. Students were
expected to write 1-2 pages in Fall 2018. To encourage students to address more pieces of the
project rubric and, in particular, specify what connections exist between the material and how you
plan to leverage these connections to make the project more concise, students were then expected
to write at least two pages in Spring 2019. During a project proposal meeting, which contributed
an additional 100 points towards the project category of their final grades, we discussed proposal
submissions one-on-one to brainstorm ways for each student to earn full credit on her/his final
project.

The remaining 800 points in the project category for their course grade came from the project
itself. Four categories worth a total of 200 points are common to these rubrics. They are included
in Table 1. The remaining 600 points make up 75% of each rubric and are content specific. These
categories will be specified below. Combining understanding of content and the content specific
categories accounts for more than 80% of the project score. So the individual creative aspects
contribute less than 20% of the final project.

2.1 Fall 2018: Excursions in Mathematics

Throughout the Fall 2018 semester, we covered twelve different problem solving strategies. These
strategies were make a systematic list, eliminate possibilities, draw Venn diagrams, analyze the
units, visualize spatial relationships, use matrix logic, create a physical representation, look for a
pattern, guess and check, work backwards, and evaluate finite differences. Students were able to
earn up to 50 points for each of these strategies. Students earned a score of 20 when they included a
strategy with little to no description, a score of 30 when they included a strategy with a description
that was mostly accurate, a score of 40 when they included the strategy with a full description of
what makes that particular strategy unique, and a score of 50 when they went above and beyond
the required elements by including examples. In the rare case where a student left out a strategy,
they earned a score of 0.

When asked to create a final product which also showed off particular strengths and interests,
the 23 students came up with a wide variety of mediums. The final projects included an array of
different scrapbooks, displayed drawings, a collection of paintings, a story, a film script, virtual set
designs, a booklet, and children’s books.
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2.2 Spring 2019

The comprehensive final project worked so well and received so much positive response from stu-
dents in Fall 2018 that a comprehensive final project was incorporated into two more classes in
Spring 2019. While both of these classes were divided into 6 units, the material was vastly dif-
ferent. Discrete Mathematics I consisted of mathematical logic (axioms, models, inference rules,
propositional logic, operations, truth tables), more mathematical logic (quantifiers, proofs), set
theory (set notation, definitions, set proofs – element chasing), induction and recursion (sequences,
recursive definitions, proof by induction), relations (representing relations, operations on relations,
equivalence relations), and graphs and counting. Meanwhile, antiderivatives (constructing accurate
graphs of antiderivatives; the Second Fundamental Theorem of Calculus; integration by substitu-
tion), integration techniques (integration by parts; other options for finding algebraic antideriva-
tives; numerical integration), some applications (using definite integrals to find area and length;
using definite integrals to find volume); more applications (density, mass, and center of mass; physics
applications: work, force, and pressure; improper integrals), sequences and series (sequences; geo-
metric series; series of real numbers), and more series (alternating series; Taylor polynomials and
Taylor series; power series) were the topic groupings for Calculus II.

In both classes, students were able to earn up to 100 points for each subdivision of the respective
material. Whenever students accurately incorporated all of the key ideas for a particular topic
grouping, they earned full marks. Whenever students incorporated all of the key ideas with little
error or incorporated most of the key ideas with no error, they earned 80 points out of the 100
possible. Whenever students incorporated many key ideas with a few errors, they earned 60 points.
Whenever students incorporated some key ideas accurately or had many errors, they earned 40
points. Students earned no points if they failed to mention anything about a particular unit.

Due to the sheer volume of content in both classes, students were more likely to score low on
a couple of specific content categories than in the previous semester. In these cases, topics were
barely incorporated or never even mentioned. Yet the projects students created were still incredibly
impressive. Furthermore, students who excelled on their final projects in every content category
spent far more time creating their projects than I had intended them to take.

Discrete Mathematics I

There were a wide variety of project mediums utilized in Discrete
Mathematics I during Spring 2019. One student wrote a sample
final with a solution key. This student used a central theme of
tennis to connect the problems to personal interests. Showing off a
love of exercise, another student designed an exercise schedule for
one week of training. A number of students wrote for their projects.
These written projects included song lyrics, a song parody, a play, a
comedic story book, and a short book on how a college student in a
Discrete Math course goes about solving different discrete problems.
Another student created a comprehensive Discrete Math scrapbook.
One page is shown in Figure 1.

Figure 1: This page gives a
glimpse of the comprehensive
Discrete Math scrapbook that
was created in Spring 2019.
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Students also created a wide variety of games ranging from computer programs to tangible board
games. A couple of students created different jeopardy review games using their programming ex-
pertise. Other computer science majors created their own Who Wants to be a Millionaire: Discrete
Math Edition games. One student added their own questions to the game of Life. Someone else
created their own version of Chutes and Ladders from scratch. While climbing and sliding move-
ments match the rules in the traditional version, players must answer questions correctly before
moving. The answers to most of the questions appear on the back of the respective card whenever
possible.

Some projects were designed with a more intentional view of how topics were related across the
different units. One such project displayed a series of Venn Diagrams across a thick poster board.
Inside the pocket found in each region is a note card with detailed information on the respective
category. Another student wrote a newspaper article Breaking it Down: Alex Honnold Climbs El
Capitan Without a Rope!. In this article, the student illustrates how much was learned and how
the topics are related through the lens of a passion for climbing.

Calculus II

Like the 17 Discrete Mathematics I students, the 20 Calculus II students created quite diverse
projects. Handmade games, 3D printing, detailed and decorated notebooks, and posters are only a
few examples of these projects. Four particular projects will be highlighted here.

One of the homemade games was Math-opoly. The game booklet was completely made by hand.
The rules and special places reflected different aspects of our classroom culture. Competitors had
to correctly answer the question that corresponds to the spot on which their piece landed to earn
the right to buy property for that particular space. Following the schema of Monopoly, the student
associated later properties with problems that were more challenging in her eyes. The student even
sought the help of a math tutor to 3D print the pieces she had designed for her riff on Monopoly.

A superhero fan carefully crafted a trifold poster board. From finding the area between the curves
that make up the bat signal to the work needed for the crane to move building pieces to outwitting
the Joker with power series manipulation, this student stayed true to a superhero theme.

Another student illustrated a series of four children’s books with multiple stories. Readers interacted
with these activity books by coloring, answering questions, and more.

Someone else sketched the color by number cartoon
fish shown in Figure 2. As expected, the problems and
solutions let people know what color to use to fill in a
particular piece of the fish. Notice that the problems
intentionally span many topics from Calculus II.

Figure 2: Here is a color by number car-
toon fish from the Calculus II Spring 2019
comprehensive final project.
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3 Take Two: Depth over Breadth

Redesigning Excursions in Mathematics over the Summer of 2019 allowed me time and space to
reflect on this first year of comprehensive final project implementation. As mentioned previously,
students struggled to create something special while incorporating every topic covered throughout
the semester. To be more cognizant about student time and other resources, I intentionally focused
the expectation of the creative project(s). Instead of addressing everything covered in class, students
were responsible for diving more deeply into less material.

Along with this shift to a more focused project, the 200 points for writing a proposal and meeting
to discuss that proposal slimmed down to 20 points for writing a proposal that is at most two pages
and no points for brainstorming proposal ideas during class time. In addition, the massive 800
point cumulative project rubric evolved into rubrics dependent on free form comments (instead of
specific rating categories) as evidenced in Tables 2, 3, and 4. There was an intentional shift in the
weight of content versus the weight of the more creative aspects. The original rubrics had close to
an 80% content, 20% creative split. To encourage more originality, these new rubrics have a 60%
content, 40% creative split.

The rubrics from Tables 2 and 3 show that the categories and descriptions for Excursions in Math-
ematics and Calculus II are almost identical. However, there are a couple of distinctions. The
audience for projects created by Excursions in Mathematics students included younger students as
well as classmates. Differences in the understanding of content category reflect the differing nature
of these two courses. While Table 4’s rubric appears wildly different from the other two, the cate-
gories are simply rephrased to match the assigned medium. Furthermore, the comparative weights
of each category remain constant. In actuality, the biggest difference is that Discrete Mathematics
I students were tasked with incorporating 3 to 4 problems with solutions instead of the 2 to 4
problems required for the other classes.

3.1 Excursions in Mathematics

Several aspects of the Excursions in Mathematics course changed as part of the course redesign
process. After getting brief introductions to the 17 strategies in our text, students voted on which
ones appealed to them the most. The 5 problem solving strategies we covered were based on a
majority voting system. For their creative project, students focused on 1 of these 5 strategies.
Every student ranked the 5 strategies. Then the strategies were assigned based on these rankings
in such a way that each one was covered by someone.

Fall 2019

In Fall of 2019, students elected to solve problems using the following strategies: eliminate possi-
bilities, look for a pattern, guess and check, solve an easier related problem, and create a physical
representation. Several students wrote lesson plans around eliminating possibilities. These les-
son plans were accompanied by original problems aimed for younger students, a Guess Who game
featuring the faces of our class, and worksheets. There was also a PowerPoint with two cookie
counting problems for which actual homemade cookies were used to model eliminating possibilities.
Other students found patterns via writing original poetry, sketching Pacman and Tetris artwork
examples, several examples from written music and playing the saxophone, and a fourth grade
lesson plan PowerPoint with worksheet handout. Other students illustrated the guess and check
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problem solving strategy by catching shiny Pokemon, writing a short play, designing an interactive
photo album, constructing an original board game, and creating a couple of lesson plans (one fea-
turing geometric problems and the other featuring a ladybug game). The only student who chose
to solve easier related problems for the creative project designed a lesson plan PowerPoint with
three examples from her life. The remaining students designed a miniature scrapbook, a lesson
plan for elementary school students, and four miniature artwork paintings to highlight the strategy
of creating a physical representation.

Fall 2021

Draw a diagram, eliminate possibilities, look for a pattern,
guess and check, and create a physical representation were
the five chosen problem solving strategies in Fall 2021. Tran-
sitioning from 19 students the previous year to 8 students
this year meant fewer projects. Only 6 students of the 8 en-
rolled consistently engaged in the course and completed as-
signments. One student created a slide show with a Christ-
mas themed TikTok video to illustrate drawing a diagram.
Another student designed an eliminating possibilities lesson
plan with examples for elementary-aged students. Two stu-
dents created projects around looking for patterns. One stu-
dent found patterns in the writing, composing, and reading

Figure 3: There is a clear pattern
in these Christmas ornaments.

of music; meanwhile, the other student painted the Christmas pattern shown in Figure 3 as a
visual aid for elementary school aged children. To demonstrate guess and check, one student
created problems based on her My Little Poniesfigurine’s spending habits and another student
designed a PowerPoint with karaoke examples. The last student created manipulatives as a physical
representation for peers to use as they solved original problems.

3.2 Calculus II

Unlike Excursions in Mathematics, there were enough topics and few enough students that everyone
in Calculus II was responsible for completing 2 distinct creative projects. The content for this course
was divided into the three units; sequences and series, applications of integrals, and evaluating
integrals. Every student selected three topics, one from each unit. And each topic was selected
by one person or no one. Since students were required to create two projects, they also completed
two proposals. Both proposals were due near the end of class in Fall 2019 and Fall 2020. When
reflecting, the latter students shared that completing one of the proposals earlier in the semester
would encourage them to start thinking and planning for the corresponding project sooner and,
subsequently, alleviate some pressure. Therefore, the first proposal was due shortly after midterm
in Spring 2021. Any student who wanted to earn extra credit had to complete the third project.
They could elect whether to discuss their ideas for this extra project with me or not, but there was
no formal proposal required.

Fall 2019

Students shared their sequences and series projects at our first exam meeting. There were home-
made scrapbooks on sequences and the limit comparison test. A third scrapbook illustrated the
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alternating series test with an analogy to the real life behavior of ocean waves. Geometric series
were illustrated via a hands on banana cutting experiment. A student featured power series in a
slide show. Another student wrote a poem on the ratio test. As a final project from this unit, a
sequence of growing 3D printed squares provided a memorable example of the divergence test.

We kicked off our second exam meeting with several projects featuring applications of integrals.
One poster displayed information on the area between curves while three smaller posters highlighted
improper integrals. Washer method examples were carefully explained on personal white boards.
Arc length and mass and density were brought to life via a 3D printed disc and a science experiment,
respectively. Homemade magnetic grid and rods brought center of mass problems to life. Work
problems were illustrated via CAD images included in one PowerPoint, and another PowerPoint
illustrated the disk method via physics examples. A couple of additional PowerPoints for topics
from evaluating integrals wrapped up this second exam, and final, meeting.

Fall 2020

During the 2020 Thanksgiving break, the administration informed everyone that the last week of
classes was canceled and all final exam meetings would be conducted remotely. Luckily, Zoom
provided a convenient way for students to share projects. Given this new context, a few topics
went from a more creative proposed project to original work in slide shows. There were still several
more creative ideas incorporated into these slide shows and other types of projects shared.

One person created sequences based on different chords in music. Another student shared a hand
made booklet containing a plethora of information on power series and interval of convergence. In
addition to a history of the integral test and improper integrals in an original newspaper titled The
Paper of Calculus, there were problems in the form of trivia questions. Peers were asked to role
play characters 0, 1, and r from the story book Math is Just a Walk in the Park which highlighted
the divergence test, limit comparison test, and ratio test with original artwork.

Based on photographs featuring curves taken and found by one student, we found the area between
those curves by modeling them with functions. One such image is shown in Figure 4 on the
following page. We also measured the lengths of arcs based on recordings of track wins. We played
an original game with colored spaces associated with density and mass questions. We then explored
physics applications through participation in a Desmos activity using various examples based on
kitchen containers. A baking video provided a new way to analyze substitution. We even studied
numerical integration techniques by running examples through an interactive, student-generated
integral calculator and analyzing its related code.

Spring 2021

When we returned to in person finals in Spring 2021, the individuality of all 9 Calculus II students
shone forth amongst the various projects created. A golfer challenged everyone to solve Taylor
polynomials and Taylor series problems at each hole on a fabricated golf course. Someone else was
excited to share how much time was spent recording three stop animation sequences. A future
mathematics teacher created a sequencing of problems in such a way that the letters corresponding
to entries on an integral table answered a clever integration riddle. A member of the LR rocket
team demonstrated force ideas by launching a rocket for everyone. A music lover demonstrated
the alternating series test by playing composed pieces on an online keyboard. Center of mass
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problems even featured images of class teammates. A meme enthusiast had everyone crying from
a deliberate use of memes to review the limit comparison test. One of these memes is shown in
Figure 5. Approximations of the speed of a family hedgehog when walking versus running towards
food were used to construct relevant work problems. Another student designed posters featuring
objects signifying her favorite summer time hobbies to review finding volume using the washer
method.

Figure 4: This figure features several steps from the process for finding the area between curves.

Figure 5: This figure shows two series who are essentially the same as twins.

3.3 Discrete Mathematics I: Spring 2020

Course material was divided into mathematical logic, relations, set theory, proof, induction and
recursion, and graphs and counting units in Discrete Mathematics I in Spring 2020. When COVID
led to remote asynchronous instruction following Spring Break, instructors were tasked with paring
down the remaining material by only keeping essential assignments. While students were still
expected to produce a creative project on 1 topic, they all had to creatively produce a section of
our class graphic novel on an assigned topic. Topics were assigned based on student responses to
the following prompts:
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• Rank the six units in order of personal preference.

• Explain your ranking in three or more sentences.

• Identify any topics that you particularly enjoyed studying. Briefly explain.

• Identify any topics that you have not particularly enjoyed studying. Briefly explain.

Students had been reading Eric Goessett’s Discrete Math: The Graphic Novel, (Second Edition)
throughout the entire semester, so this medium was a natural choice. Snippets from a handful
of finished products included in Figure 6 showcase a variety of the styles used, from hand drawn
sketches to different online templates.

Figure 6: There is one panel each from 5 different comic strips.

4 Concluding Remarks

Work submitted by students for projects showcased understanding of content, creativity, individu-
ality, and so much more. The samples from projects described and pictured throughout this article
highlight the strengths of projects over more traditional cumulative final exam tests. Implementing,
and adapting, final creative projects allowed me to gain confidence in coaching students to success-
fully create products. Increased confidence in implementation as well as great joy over student
ownership of their work together encouraged me to implement project assessments more holisti-
cally. In fact, Discrete Mathematics II students completed three projects throughout the Spring of
2020 as their only forms of assessment. The 5 students in this upper level course produced such
impressive projects and responded so positively that I once again replaced all forms of assessment
in the lower level Discrete Mathematics I course in Spring 2022. Since there are 6 units, each of
these 22 students created a total of 6 projects.

When first implementing projects for comprehensive creative projects, it was grueling to grade.
Looking for breadth and depth in projects took longer than preferred. Furthermore, recognizing
that students who were not able to include all the topics were scoring lower than I would have
hoped was disappointing. When grading more traditional exams, it is easier to blindly grade
using a solution key. With final projects, I am more emotionally invested throughout the entire
grading process. Adapting the assignment details and rubric for creative projects that focused on
depth not only provided space for students to be more successful in creating masterful projects
but also provided me more space for grading projects in a healthier way. Students were expected
to dive even deeper into specific topics, and they delivered quality products. How well a student
understands a particular topic was even more clearly evident in creative projects than in those
more traditional assessments. Projects did not allow students to simply memorize and regurgitate
steps to a problem type. They had to move past remembering and understanding related material
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to examine and interpret material from a different perspective to produce an original product. So
grading more focused projects with the current rubrics is a more enjoyable and speedy process.
Familiarity with my current project rubric allowed me to grade projects as quickly as I had graded
more traditional tests in previous semesters. The progression of rubrics emphasizes the importance
of including enough detail to help students understand your expectations while leaving enough room
for students to shine in ways that are already meaningful to them. This balance allows instructors
the freedom and constraint to grade in a faster and fairer way.

In the future, I plan to share more details about the well over 200 projects created. In particular,
I would like to analyze the two classes in which all forms of assessment were replaced with creative
projects. I would like to share how I incorporated creative projects with mastery grading as well.
Having seen the benefits of creative projects as an alternate form of assessment firsthand, I would
like to initiate a longitudinal study of the benefits of such implementation. Personal experience
shows me that there are many positive results. Collecting more qualitative and quantitative data
will better allow us to determine the effectiveness of alternate forms of assessment.

Since Fall 2018, I have been blown away by the products produced by over 172 students. I am
beyond grateful for how much I have grown with, and for, my students throughout this journey
around creative projects. I am particularly thankful to every student who gave me permission to
share their work, including all of the anonymous students as well as those listed in Section 9.

5 Common Rubric Categories for Comprehensive Final Projects
Criteria Ratings

50 points 40 points 30 points 20 points
Full Marks Very Good Competent Needs Work

Creativity Exceptionally
clever and unique
in showing deep
understanding

Thoughtfully and
uniquely presented;
clever at times in
showing under-
standing of the
material

A few original
touches enhance
the project to show
some understanding
of the material

Shows little cre-
ativity, originality
and/or effort in
understanding the
material

Neatness and
attractive-
ness

Exceptionally
attractive and par-
ticularly neat in
design and layout.
No grammatical
or mechanical mis-
takes in the project.

Attractive and neat
in design and layout

Acceptably attrac-
tive but may be
messy at times
and/or show lack of
organization

Distractingly messy
or very poorly de-
signed. Does not
show pride in work.

Understanding
of Content

Shows a sophis-
ticated under-
standing of all the
different problem
solving strategies

Shows an under-
standing of several
of the problem solv-
ing strategies.

Displays a some-
what limited
understanding of
the problem solving
strategies. May
have a few misin-
terpretations.

Does not show an
understanding of
the problem solving
strategies. Misses
several of them and
has quite a few
misinterpretations.

Overall Ef-
fectiveness
and Comple-
tion

Project is engag-
ingly organized and
presents material
that is captivating
for the viewer.

Project is some-
what organized,
complete, and holds
the attention of the
viewer.

Project is disorga-
nized and incom-
plete at times and
is somewhat able to
hold the attention
of the viewer.

Project is incom-
plete and not easy
to follow.

Table 1: Here are all the criteria and ratings that were shared among courses in which a comprehensive
final was assigned.
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6 Excursions in Mathematics (Individual) Strategy Project Rubric

Criteria Description Points
Possible

Appropriate Au-
dience

Presentation of material is easily understood by non-experts (peers in our
class and/or younger students). Furthermore, the material is captivating
for the intended audience.

20

Understanding
of Content

Shows a sophisticated understanding of all the key ideas associated with
the particular problem solving strategy. Highlights key phrases found in
problems which may be solved using the given strategy. Incorporates the
distinguishing characteristics of that particular strategy. Explains how to
apply the strategy effectively when solving problems.

60

Accuracy There are 2-4 problems with solutions clearly articulated without errors. 60
Creativity Presentation of material is well thought out and unique to the strengths

and interests of the student.
20

Aesthetically
Pleasing

Exceptionally attractive and particularly neat in design and layout. No
grammatical or mechanical mistakes in the project.

20

Overall Effec-
tiveness and
Organization

Project is engagingly organized and demonstrates clarity of ideas. 20

Table 2: This rubric was used to grade every strategy project submitted in Excursions in Mathe-
matics for Fall 2019, Fall 2021, and Spring 2022.

7 Calculus Rubric for Final Projects

Criteria Description Points
Possible

Appropriate Au-
dience

Presentation of material is easily understood by peers in this class. Fur-
thermore, the material is captivating for the intended audience.

20

Understanding
of Content

Shows a sophisticated understanding of all the main ideas associated with
the particular topic. Highlights key steps used when solving related prob-
lems. Incorporates tips for studying this particular topic. Explains how
this topic fits into the bigger Calculus II story line.

60

Accuracy There are 2-4 problems with solutions clearly articulated without errors. 60
Creativity Presentation of material is well thought out and unique to the strengths

and interests of the student.
20

Aesthetically
Pleasing

Exceptionally attractive and particularly neat in design and layout. No
grammatical or mechanical mistakes in the project.

20

Overall Effec-
tiveness and
Organization

Project is engagingly organized and demonstrates clarity of ideas. 20

Table 3: Here is the complete rubric used to grade each final project submitted in Calculus II for
Fall 2019, Fall 2020, and Spring 2021.
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8 Discrete Mathematics I Rubric for Final Graphic Project

Criteria Description Points
Possible

Appropriate Au-
dience

Presentation of material is easily understood by non-experts (peers in our
class and/or younger students). Furthermore, the material is captivating
for the intended audience.

10

Understanding
of Content for
Assigned Topic

Shows a sophisticated understanding of all the main ideas associated with
your assigned topic. Provides the background information necessary to
study the topic. Clearly articulates all related definitions. Explains how
the associated objects are related to one another.

30

Problem Solving
for Assigned
Topic

Clearly state 3 to 4 problems which provide insight into the breadth of
your topic. Provide accurate solutions to each problem. Highlights key
steps used when solving these problems. Incorporates tips for studying
this particular topic.

30

Story Creativity Presentation of material is well thought out and unique to the strengths
and interests of the student.

10

Effective Visual
Aids Appropri-
ate for Graphic
Novel

Uses drawings (by hand, computer-generated, stickers, etc.) and dialogue
’bubbles’ to convey your information. Effectively incorporate these visual
aid(s).
*Check out our class text Discrete Math: The Graphic Novel, (Second
Edition), by Eric Gossett.

10

Story Effective-
ness and Organi-
zation

Presentation of material is engagingly organized and demonstrates clarity
of ideas.

10

Table 4: MAT 150 Spring 2020
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Mathematical Minds:
A Senior Seminar for the Mathematically-Minded
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Abstract

This paper describes a successful senior seminar course that leads to interesting and fruit-
ful conversations, allows and encourages enrollment by non-majors, provides opportunities for
meaningful program assessment, and could easily be adapted to between one and four credits.

1 Introduction

Capstone courses or projects have long been recognized as, if not essential, certainly beneficial
aspects of undergraduates’ collegiate experiences. Rash and Weld, in “The Capstone Course:
Origins, Goals, Methods, and Issues,” share 12 papers arising from a conference session (sponsored
by PRIMUS at the Joint Mathematics Meetings in 2012) on capstone courses. They note that
the courses described often connect to institutional mission and share goals of promoting life-long
learning and “enhanc[ing] mathematical thinking and communication skills among students” [8].
In Designing and Teaching Undergraduate Capstone Courses, Hauhart and Grahe make substantial
use of numerous studies to provide a summary of the history and practice of, and research into,
capstone experiences. They find that capstones are usually disciplinary courses with a major project
for each student that leads to a peer-reviewed paper and its oral presentation, though capstones
can take a wide variety of forms. A common goal, however, is the integration and application of
material [7].

One somewhat tenuous conclusion in Designing and Teaching Undergraduate Capstone Courses is
that private, undergraduate colleges are more likely to offer capstone experiences than research
institutions. Though noting that the claim is preliminary due to the need for more comparative
studies, Hauhart and Grahe proceed with their assumption about the schools most likely to offer
capstones and conjecture that faculty at private, undergraduate colleges have more time and re-
sources to apply to capstone courses since they are not required to focus on graduate education
[7]. Hauhart and Grahe do not appear to factor in the heavier teaching loads typical at many
private institutions, however, and in recent years the risk of elimination of traditional programs
seems to be increasing as small colleges in particular face enrollment struggles [4] and may seek to
prioritize programs seen as more financially viable [5]. Faculty teaching in small programs can find
it hard to convince themselves of the value in assigning to a capstone course personnel and credits
that might benefit the program in other ways. In particular, project-based capstone courses are
unlikely to attract non-majors and thus seem likely to negatively impact departmental statistics
used in administrative decisions about program futures. This paper describes a successful senior
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seminar course that leads to interesting and fruitful conversations, allows and encourages enroll-
ment by non-majors, provides opportunities for meaningful program assessment, and could easily
be adapted to between one and four credits.

2 Requirements and Goals

About five years ago, a new rendition of the general education program (NWCore) at Northwestern
College added senior seminars as a required element for the first time in several decades. To
facilitate faculty buy-in during the approval phase, this aspect of the program was designed, after
significant study of the wide variety of senior seminars available nationwide, with a lot of flexibility.
Senior seminars can be re-tooled discipline-specific courses, interdisciplinary (though still somewhat
narrowly-focused) courses, or multidisciplinary courses intended for students from virtually any
major. The courses can be offered for two, three, or four credits, and students can take them any
time in their last three semesters of college with an option for the start of their junior year if that is
the only time the course fits the student’s schedule. While generally a Northwestern major cannot
require students to take more than 36 credits within a single department, majors can require a
specific senior seminar, even if it is essentially a disciplinary course, without counting the course’s
credits against that limit.

There are components, however, that every such course is required to feature. Each senior seminar
must:

• Serve as a capstone to each student’s entire collegiate experience.

• Be writing- and speech-intensive.

• Require students to reflect on their experiences during their college years, focusing on the
extent to which they have met the college’s NWCore goals.

• Require students to reflect on how they might implement what they have learned.

• Assist in institutional assessment of the NWCore.

Northwestern’s Core goals are not significantly different from those at other small, regional, Chris-
tian colleges whose faculties emphasize the liberal arts. Our intent is that students will:

• Integrate Learning (integrate faith and learning and connect knowledge across disciplines and
to life outside the academy)

• Seek Knowledge (develop intellectual curiosity and explore major themes of the Bible and
theology, of human cultures and human nature, and of the natural world)

• Demonstrate Skill (practice multidisciplinary thinking and integrative habits of mind)

• Live Responsibly (participate in God’s redeeming work, developing a comprehensive view of
ethical responsibility that encompasses both individual behavior and responsible action in
community)

Though not already offering a required senior seminar that could be revamped, the math department
did have the convenient pairing of a professor who was eager to develop such a course and an easily-
adaptable course (“History of Mathematics”) with class discussions that already had the feel and
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content of a senior seminar. Aside from the title (now “Mathematical Minds”), the most significant
change was to the prerequisite: calculus II replaced linear algebra, opening the course to more than
just departmental majors and minors and thus enabling an annual offering of the course with an
enrollment of 12 to 15.

3 Framework and Texts

It’s important to note that, while faculty and staff at Northwestern are required to profess and
demonstrate an active Christian faith, students are not. Faculty approach this in a variety of ways
when it comes to the decidedly Christian goals of the NWCore. In this course, students know from
the start that while the professor’s hope is that each of them has developed or enhanced a vibrant
Christian faith by the time they graduate, she also realizes that they’re all in different places on
the journey and that some may be on a different path entirely. They are not asked to proclaim
a faith they do not have—and they are not graded differently if they make such a profession in a
paper or speech—but they are expected to be able to discuss issues from a Christian perspective,
which they may introduce using phrases like “Some Christians believe” or “Reformed Christianity
asserts.”

The NWCore focus of the course and its associated emphasis on the expression of Christian per-
spectives together call for texts with the potential to lead to deep thinking and meaningful dis-
cussion that encourage students to draw on a wide variety of their experiences in and out of the
classroom both before and during college. Francis Su’s book Mathematics for Human Flourish-
ing seems tailor-made for setting the framework for the course, and William Dunham’s Journey
through Genius provides excellent explication of important mathematical ideas and their historical
contexts. The ACMS book Mathematics through the Eyes of Faith is also a key text, with literally
every chapter introducing students to significant questions about the relationship of mathematics
to Christian faith. Rounding out the current list of texts is The Curious Incident of the Dog in the
Night-Time by Mark Haddon. This short book tells a compelling story and makes a particularly
nice Thanksgiving-week assignment. Students appreciate the point of view of the main character
and narrator, Christopher, a young man on the autism spectrum whose take on life and logic leads
to fruitful classroom conversation starting with the professor’s and students’ similarities to Christo-
pher and continuing through discussions about meaningful interactions with and the integration of
people with exceptionalities. The final content of the course is “The Man Who Knew Infinity,” the
2015 movie about Ramanujan. Watching the movie during class instead of reading texts outside of
class eases students’ workload in the last weeks of the semester when they are working on their final
paper and its presentation. This particular movie leads to more conversation about “otherness,”
about being seen (and our tendency to not see people who are different from ourselves), and about
the importance of rigorous proof.

4 Course Details

The current rendition of the course earns students three credits and meets twice a week in 75-minute
sessions. Since Mathematics for Human Flourishing and Mathematics through the Eyes of Faith
are for the most part not too mathematically-intense and often connect well, chapters from those
books are usually paired for one day’s discussion. Each chapter of Journey through Genius gets an
entire class period, however, primarily to make sure that there is time to clear up any questions
students have about the proofs.
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Another aspect of the course that helps break up the read-discuss-journal pace of the bulk of the
semester are “framing discussions.” These involve pre-class journaling and in-class discussion about
why mathematics is important in general and to each student in particular, why the college requires
all those general education courses, and whether or not the students feel a sense of calling, with
special emphasis on a call to use their analytical gifts. The framing discussions and their prep
work also form the basis for much of the final paper and presentation, which spreads some of the
end-of-course workload throughout the semester.

Project work also helps keep the class moving, along with occasional just-for-fun time spent on
challenges from the ends of the chapters in Mathematics for Human Flourishing or on problems from
Mathematics Through the Eyes of Faith, and students get some class time—on multiple occasions—
to work in groups on a larger project that counts for 10% of the course grade.

The remaining 90% of the grade is evenly divided among class participation, journal entries re-
flecting on the key ideas from the week’s discussions, and the goals paper and presentation. The
class participation portion is broken further into prepping and leading class discussion on assigned
days, submitting one question and one insight from each chapter to assist colleagues in leading
discussion on their days, responding to occasional journal prompts that address program goals for
the math department’s various majors, contributing periodically to the classroom conversation, and
presenting a proof to the class.

5 Writing Prompts

While the production of meaningful student writing often requires detailed writing prompts, past
students in this senior seminar have expressed desire for and appreciation of prompts that are
simplified and somewhat open-ended. The weekly journal prompt below has served well to balance
both student and instructor desires:

• Discuss two or three insights that you found particularly helpful or interesting.

On the other hand, the framing discussion prompts are intended to give students a head start on
their final essay and are necessarily more detailed:

• Discuss one or two moments or events in your life that helped you see mathematics as a
discipline worth studying. You can contribute to this discussion even if you are not a math
major—why did you take as much math as you did? What about math led you to take this
course?

• Discuss one or two things you learned about the value and importance of taking classes outside
your major discipline. How has the NWCore contributed to your overall education? Examine
the NWCore goals one by one. Has the program met those goals? Also, get copies of your
curricular and co-curricular transcripts, and reflect on the content and sequencing of your
college experiences—how have these things contributed to who you are and how you will live
in the world?

• Reflect on how you have changed since your early days of college, and take note of experiences,
ideas, or assignments that contributed significantly to your development into the person—
and, in particular, the thinker—that you are today. Have they led to a specific calling or
perhaps several callings? Do you expect to feel the same way in 5 years? In 10? At the age
of 50?
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Assessment prompts connect to some of the department’s specific goals for student learning and
provide quick data to inform assessment efforts:

• Discuss two or three real-world applications of mathematical concepts that you have learned
about during your college career.

• How would you articulate a Christian perspective on the claim that mathematical structure
reflects God’s character present in Creation? Give reasons for your response.

• To what extent, if any, would you agree with the claim that mathematics is a creative disci-
pline? Give reasons for your response.

Finally, the goals paper prompt asks students to reflect on their entire collegiate experience.

• Your paper should . . .

– Note each NWCore goal and examine your progress in reaching it, referring to at least
3 assignments, ideas and/or or experiences per goal in tracing your progress over time.

– Explore significant turning points in your development.
– Reflect on your experiences outside the classroom and how they contributed to your

progress toward meeting the goals of the Northwestern Core.
– Name and explain your personal commitments as a prospective contributor to your

chosen field. This is a good place to explore your development in seeing a relationship
between your faith commitments and your future work.

These prompts have usually been sufficient for generating thoughtful student responses, with de-
tailed grading rubrics and careful and speedy feedback on the first of each type of writing (including
the first draft of the goals paper) helping to clarify expectations.

6 Feedback

Student feedback—usually offered in course evaluations but also in journal entries, class discussion
prep, and the goals paper—has been the catalyst for many modifications that have led to a more
successful course. These suggestions have resulted in more class time to work on projects, including
time to collaborate with other groups; replacing a required text with a movie to ease the workload
at the end of the semester; streamlining expectations for journal entry length and content; and
spending more in-class time on the more difficult mathematical topics in the course texts.

While the NWCore goal of demonstrating skill is assessed in multiple ways throughout the cur-
riculum, the following data (from Campus Labs’ IDEA course evaluations over the past 4 offerings
of “Mathematical Minds”) suggest that the course helps students make progress on the goals of
integrating learning, seeking knowledge, and living responsibly:
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Frequently Always Total
Found ways to help students answer their own
questions 39% 58% 97%

Helped students to interpret subject matter
from diverse perspectives 30% 61% 91%

Asked students to share ideas and experiences
with others whose backgrounds and view-
points differ from their own

33% 67% 100%

Asked students to help each other understand
ideas or concepts 24% 64% 88%

Related course material to real life situations 30% 67% 97%
Introduced stimulating ideas about the sub-
ject 33% 64% 97%

Encouraged students to reflect on and evalu-
ate what they have learned 33% 67% 100%

Written comments in course evaluations, in journals, in student-submitted pre-discussion questions
and insights over the readings, and in the NWCore goals paper also suggest that the course is
encouraging students to reflect on what they have learned and to recognize the boundaries of their
learning, helping them connect faith and math, and leading them to ask and wrestle with big
questions.

Course evaluation comments, in particular, illustrate the integrative nature of the class:

• I was able to really understand how I can use my gift of math to benefit and serve the kingdom
of Christ. This course was probably one of the best courses I have taken when it comes to
faith integration.

• [This course] has made me think more about God’s complexity because of the books that we
read about mathematics and how [it relates] to God.

• I really appreciated the meaningful discussions we had during class. These discussions helped
me gain a broader perspective of different topics that helped me strengthen my faith.

• This class has caused me to ask questions of how mathematics, God, and my faith relate,
and it has been a great growing experience. This semester I’ve asked myself questions that I
would have never thought of if not for this class.

Journal entries point further to students’ recognition of their own progress in understanding math-
ematics, understanding faith, and seeing new connections between the two:

• One form of permanence Su did not necessarily mention is the permanence of mathematical
processes within our memories . . . I may forget the exact terms and definitions for things, but
after simply reviewing a definition or two when going back to a concept, I have found that
the mental pathway is usually still there. With this, math is not about developing a growing
number of skills. We are simply always building on one skill—analytical thinking—which is
a skill that stays with us permanently.

• Before, I was thinking of mathematics as simply the properties that exist in the world them-
selves, which would exist whether or not someone proves them. Now, I see the label of
mathematics as including the work done to explain these ideas, meaning that there are in-
deed parts of math that are discovered and parts that are invented.
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• Our class discussion made me recognize that much of what I learn in math classes is learned
by initially accepting the procedure and then formulating meaning months or even years
down the road. My education professors have drilled into me that every lesson has to involve
meaning-making, but I have to remember that sometimes it is good enough that students
just have access to meaning, rather than a full understanding of meaning.

• In Mathematics Through the Eyes of Faith I thought that it was interesting to think about
trust and mathematics being related. It’s so easy to take for granted everything that came
before us that we didn’t have to work toward. I’ve certainly never worked through the proofs
of many things that I have used in math, however, I still trust that they are accurate and use
them with faith. I really appreciated that connection back to faith.

Questions submitted for classroom discussion, like course evaluation comments, demonstrated stu-
dents’ increasing ability to ask and begin to wrestle with meaningful questions:

• What is a practical way of dignifying humans (to promote flourishing) with Mathematics,
when convention would say Mathematics dehumanizes people by often reducing them to a
number or statistic?

• Is it possible that God helps us in ways that we never even consider, such as getting us out
of the loop of moving to the halfway point . . . infinitely many times and thus not going
anywhere at all?

• In what ways can we use infinity to better explain the omnipotence and omniscience of God
to those who are not of Faith?

• Are there ways that we think that we are being logical, like Christopher [the narrator in The
Curious Incident of the Dog in the Night-Time], that actually make no sense whatsoever?
Should we be more prepared to step back and examine our understanding of things?

Student-submitted reading insights (used in class discussion) often illustrated deep connections to
the ideas in the texts and a desire to explore some of those ideas in more depth:

• The idea that mathematical ideas can be conveyed via story is new to me and something
I have personally never experienced, although it does make sense in theory. Patterns are
best conveyed through stories, where patterns are obvious, so if mathematics is the science of
finding and evaluating meaning in patterns, then stories would be the best way of instructing
students about new ideas. I can definitely confirm the claim that the chapter makes about
student learning, however—the times I have purposefully ignored the fine details of what I’m
reading and instead looked at the big picture and compared my reading to previous topics
have been much more fruitful than those where I simply memorized for the sake of finishing
homework.

• The concept of dimensions fascinates me . . . The idea that God is a higher dimensional being
that can interact with our world in ways that do not make sense to us because they are truly
out of the realm of what is comprehensible to us. But Him interacting in our 3 dimensional
world, we would only see what is possible to be seen in our world.

• I think sometimes when we have a success in an area we forget that we are building on prior
knowledge that we have taken in and internalized due to the breakthroughs of others. It is
easy to look and say yes that was all me and I figured it out on my own when in fact anything
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that we figure out is not on our own but we are building on previous knowledge and ideas we
can take for fact because of what everyone else has done before us. Same goes in our faith
lives and journeys.

• I liked the way this chapter explained the “freedom” of mathematics. From my experience,
math was always seen as stiff & restricted, and my classmates and I always felt math was just
“do it this way to solve this problem.” Expanding further into mathematics helps me realize
how everything is connected, and any problem can be solved a number of ways. There’s
freedom to explore and understand math, two of the points Francis Su touched on in this
chapter . . . Freedom of understanding instills so much more hope and curiosity into the mind
of a mathematical thinker.

Finally, student goals papers suggest further ways in which the students are incorporating NWCore
goals into their future plans:

• In [one] class, [I] gave a final presentation about . . . Rwanda . . . and a practical application
towards how to help. I . . . came up with a business idea that helps recycle plastics that can
be used in roads and other construction projects. [This helped] me to develop a heart to live
out my faith in whatever job I go into.

• [Contemporary Moral Issues] taught me a lot about how to talk to others with different beliefs
than me, especially about topics that are controversial . . . To be able to pass the class, I had
to learn how to hear and understand opinions and worldviews that are different from mine.
Through the various readings that approached a topic from all different sides and by watching
the way my professor interacted with my class, I learned how to have a conversation about
controversial topics instead of just arguing over them.

• Being a knowledge seeker means not shying away from [difficult] questions but instead em-
bracing them and the conflicts they raise in our minds, relishing the tensions that eventually
give way to cognitive closure, and those who investigate these questions are bettered through
it.

• During [the statistics instructor’s] lecture, he would often be reminded of something that
happened outside of the classroom where he used his experience . . . These were parts of class
that I may remember more than much of the mathematics that I learned in class because
it was a helpful example of how we as mathematicians could help others in our work as an
actuary or as a member of a church.

As this collection of student thoughts illustrates, the course is indeed meeting the college’s goals for
the senior seminar, in particular by requiring students to reflect on their experiences during their
college years and on how they might implement what they have learned.

7 Potential Modification

While the course works well in the three-credit format, it could easily be modified to support a load
of four credits. One approach might be to add a substantial research project. Another might be
to include an additional text and related assignments. Seife’s Zero: The Biography of a Dangerous
Idea, for example, one of the course texts prior to the publication of Su’s book, led to fascinating
discussions about faith aspects of mathematical thinking throughout history.
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Removing a text or two, on the other hand, would allow a very similar course to be taught in
a two- or even one-credit format. Programs with a strong faith integration component would be
served well by pairing Mathematics for Human Flourishing with Mathematics through the Eyes of
Faith, while those with a strong research component might supplement Journey through Genius
with individual and group research projects.

8 Conclusion

As demonstrated above in the table presenting key results from the quantitative portion of student
course evaluations, “Mathematical Minds” helps students make progress on three of Northwestern’s
Core goals (integrating learning, seeking knowledge, and living responsibly). An impressive 88 to
100 percent of students reported that the course “frequently” or “always” helped them answer their
own questions, seek and respect diverse perspectives, connect learning to real life, and reflect on and
evaluate their learning. Student comments and statements in a variety of course contexts reinforce
the conclusions suggested by the numbers in the table, and taken as a whole this feedback provides
evidence that the course meets the college’s objectives for a senior seminar.

As anticipated, a more modest course prerequisite of calculus II has led to more diversity among the
students, with each roster to date including not only actuarial science, mathematics, and statistics
majors but also two to four computer science majors as well as the occasional student majoring in
biology/health professions, chemistry, economics, or history (not counting those double-majoring
in one of these disciplines and a math department major). These students have made significant
contributions to the class both during discussions and in their various written submissions, and,
while their responses are separated out when it comes to formal departmental assessment efforts,
they nevertheless have provided interesting feedback—some of it represented in the comments
above—that has made its way to department meetings and influenced the thinking of department
faculty about what and how we teach. It is also worth noting that these additional students, in
this small-college context, help ensure the survival of the course.

Each semester, student comments (some noted above) suggest that the classroom conversations in
“Mathematical Minds” are deep and varied. Such conversations—according to anecdotal student
reports—often continued in the cafeteria and in campus housing settings, drawing in students who
were not participants in the class. One semester, two students in the course were roommates, and
they enjoyed posing interesting math problems to friends who dropped by. Given a response of,
“Well, I’m not very good at math,” one of the math majors exclaimed, “No! No! It’s not about
being good at math! It’s about the journey! That’s the point of our whole class!” When he shared
this exchange in class the next day, his colleagues agreed wholeheartedly: mathematics is about
the journey, and this course helps students understand how to navigate their paths.
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Abstract

Discrete mathematics is a vast field that can be explored along many different paths. Opening
with a unit on logic and proof and then taking up some additional core topics (induction, set
theory, combinatorics, relations, Boolean algebra, graph theory) allows one to bring in a wealth
of relevant material on history, philosophy, axiomatics, and abstraction in very natural ways.
This talk looks at how my 2019 textbook on discrete mathematics, focused in this way, came to
be, and it highlights the various perspectival elements the book includes.

1 Introduction

A concern of the Association of Christians in the Mathematical Sciences from the very beginning
has been how to connect our Christian faith with our professional interests and work in the math-
ematical sciences. As one of this year’s ACMS pre-conference workshops and a number of speakers
demonstrated, an important way to implement this is by attending to historical and philosophical
perspectives. What I’d like to do in this essay is show how I incorporated perspectival elements
in the discrete mathematics text I wrote for an intermediate-level course that I taught for years at
Dordt. I’ll share some of my mathography, explain how my text came to be, and briefly outline
what the text covers and how it touches on perspectival matters.

2 Interest in Mathematics and Perspectival Issues

My love of mathematics goes as far back as I can remember, but in college I discovered that I also
enjoyed history of philosophy. While a junior, a philosophy professor helped me deconflict what
my major should be: he told me to stick with mathematics! That’s not quite the advice you might
think it was. He thought there were plenty of Christian academics seeking to work out their faith
in philosophy, but fewer of them in mathematics with a historical and philosophical bent. Also, a
mathematics professor familiar with my multiple interests counseled me not to philosophize without
a solid grounding in mathematics proper; else, he said, no one would listen to me.

Armed with these two sage pieces of advice, I went off to graduate school to study mathematics,
alert for ways to enrich my program with history and philosophy of mathematics. After satisfying
comprehensive doctoral exams at the State University of New York at Buffalo in algebra and analy-
sis, I was hoping to do a historically weighted dissertation on some topic in algebra or foundations.
But a potential supervisor told me that if I did that I would never find a job, and he had no interest
in overseeing such an undertaking. This time I ignored my professor’s advice. After attending a
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talk on Gauss by the well-known historian of mathematics Ken May, I decided to transfer to the
University of Toronto, where I could do a joint Ph.D. in mathematics and history of mathematics
under him, specializing in the history of logic. And, as it turned out, it was possible to find a job
teaching college mathematics with that kind of professional training.

My association with what came to be called ACMS after 1985 goes back to its inception in the
early ’70s. Like Bob Brabenec and some others, I thought Christian mathematicians should be
more intentional about connecting their faith to their academic work and that this might be helped
by engaging with the history, philosophy, and foundations of mathematics, broadly conceived.
In addition to attending and speaking at the early conferences, Gene Chase and I collaborated to
compile and annotate a Bibliography of Christianity and Mathematics (1983).1 Later, I contributed
two historical chapters on mathematization trends in the pre-modern and early modern eras in the
book authored by a number of ACMS members, Mathematics in a Postmodern Age (2001). And
in 2006, I gave the keynote address “Mathematics: Always Important, Never Enough” at a Dordt
conference for Christian mathematics educators on the topic of a Christian approach to mathematics
and mathematics education. In these ways I was able to draw upon my background interests and
professional training in history and philosophy of mathematics to share my ideas with a broader
academic audience.

3 Teaching, Textbook Writing, and Perspectival Issues

My teaching career at Dordt College beginning in 1982 encompassed a full range of standard
undergraduate mathematics courses. One course I inherited at the outset, though, was a bit of
an odd duck. Since Dordt’s calculus sequence served engineering and computer science students
as well as mathematics majors, our department decided to focus on the theory of calculus in a
transition course for our students. To prepare them for navigating rigorous ϵ – δ limit arguments
and proving the basic theorems of differential and integral calculus, we first studied how to construct
mathematical proofs. This gave me an opportunity to tap into my knowledge of developments in
logic, though I didn’t initially see how to inject very much perspectival material into such a technical
course. I did, of course, concentrate on those sorts of issues in my alternate-year capstone course on
the history of mathematics, but beyond having students read Judy Grabiner’s Who Gave You the
Epsilon: Cauchy and the Origins of Rigorous Calculus, I didn’t pay much attention to perspectival
issues in our sophomore-level transition course. Except, a significant undercurrent soon pushed me
to do more.

What I had learned about the history of logic and the foundations of mathematics in my doctoral
program made it difficult for me to accept some of what was being asserted about logic and
mathematical proof in the pamphlets I initially chose to use as a text (first Bittinger’s Logic,
Proof, and Sets; and then Solow’s How to Read and Do Proofs). I found myself pushing back on
some of their key viewpoints, but I discovered that students didn’t much appreciate being told that
what they were reading was problematic—it’s the textbook, after all!

At the same time, I was teaching the introductory logic course for Dordt’s philosophy department,
using a text (Bergmann, Moor, and Nelson’s The Logic Book) that presented logic from a twentieth-
century natural deduction perspective—the very thing, I soon realized, that my mathematics stu-
dents needed for learning how to do proofs. The alternative Frege-Hilbert-style approach, better
known to mathematicians, focused on tautologies (logical axioms) more than rules of inference

1For more information about this project, see my tribute to Gene on page 324 of this Journal and Proceedings.

ACMS Journal and Proceedings Page 188 23rd Biennial Conference



because that had been the basis for implementing the logicists’ program of reducing mathematics
to logic. Recognizing the divergent goals of these two approaches to logic caused me to revamp the
first part of my transition-math course and think about writing my own booklet on mathematical
proof. It also made me realize that I could tailor my research interests to enrich my mathematics
teaching.

At the time (1990-1991) no publishers among the 25 I contacted were willing to risk adopting my
approach to mathematical proof construction. But I was seeing its value in my students’ upper-level
coursework, so I continued to invest appreciable time and energy in developing a classroom text for
the course. This gradually morphed from bare-bones outlines to paragraphs of mathematical prose,
using Knuth’s recently available typographical system TEX (plain TEX at the time) to produce a
publication-quality manuscript.

I also used some of this material on logic in a discrete mathematics course that I taught to computer
science majors and engineering students. Thus, when enrollments in our mathematics transition
course fell below an acceptable level in the early 2000s, we decided to combine these two courses.
I dropped out the baby real analysis from the transition mathematics course and the finite state
machines material from the other, redesigning the course to suit our particular clientele. This also
gave me an opportunity to try to integrate perspectival elements where there was a natural fit.

Over the years, then, I gradually developed a text in Discrete Mathematics for the hybrid course I
was teaching on an annual basis. Upon retiring years later in the mid-2010s, I posted chapters of
my text to Dordt’s Digital Collections to continue to make them available to Dordt students—and,
as it happened, to whoever else might be interested in them. To my great surprise, they began to be
downloaded all over the world. Within a year, over 9000 chapter-downloads were made by people
in some 600 institutions and 90 countries, the most popular chapter being, amazingly enough, the
rather technical seventh chapter, Posets, Lattices, and Boolean Algebra, geared to students learning
about Boolean functions and logic gate circuits—downloads of this chapter proceeded at the rate
of around 18 per day for months.

Pleasantly encouraged by this unexpected response, I decided to see whether a publisher might
now be interested in my text. Two of the five publishers I sent a new prospectus to (Springer and
Wiley) now expressed interest; a third (MAA) declined consideration because they already had two
discrete mathematics texts in the pipeline. By the time Introduction to Discrete Mathematics via
Logic and Proof was published by Springer in late 2019 as part of their Undergraduate Texts in
Mathematics series, downloads of early chapter-drafts reached almost 80,000 by people connected
to 2500 institutions in over 150 countries. Since then, another 20,000 digital chapter-downloads of
the published textbook have been tallied by Springer through their licensing program with libraries.

4 Content and Perspectival Elements

I’ll now briefly describe the material contained in Introduction to Discrete Mathematics via Logic
and Proof (see the Appendix for the Table of Contents), and explain how perspectival elements are
embedded within it.

The book opens with a somewhat leisurely study of logic, which (as the book’s title indicates) is
a coherent integrative thread running through the text. Logic is a field with its own content and
concerns, but it clearly also has important links to mathematics and computer science. Logic forms
the proper basis, I believe, for a genuine understanding of how proofs work—under-the-hood, as it
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were—in mathematics and elsewhere. I know this is disregarded by some mathematics practition-
ers who believe that guided practice at constructing proofs is sufficient and who think that logic
introduces extraneous and distracting content. Having suffered under this benign-neglect approach
as a student, however, I beg to differ, even though I agree that practice is absolutely necessary.
I do find this negative attitude understandable, however, given mathematicians’ experience with
logic as a specialized subfield of mathematics dealing with truth tables and tautologies as well
as foundational matters such as consistency and decidability. My different purpose for including
logic is methodological, which requires an alternative approach to deduction. I employ the natural
deduction approach due to Jaśkowski and Fitch, an approach that emphasizes suppositional infer-
ence rules such as Conditional Proof, Proof by Contradiction, and Cases. These are the life-blood
of mathematical proof. When haven’t you seen a mathematical proof declare, “suppose such and
such”?

In addition to supplying a good basis for learning how to construct proofs, the replacement rules
of Propositional Logic have close connections to results in elementary Set Theory, the topic of the
fourth chapter. And this system of logic is, of course, also the theoretical basis for discussing
Boolean functions and logic circuits, a main focus of the seventh chapter.

The interconnected roles played by logic are pointed out as the text proceeds, but logic is also
the focus of a few historical and philosophical discussions scattered throughout. I survey the
historically evolving role of logic at the outset, noting that logic’s initial link to mathematics
was as the deductive instrument (Aristotle’s organon) for organizing and developing Euclidean
geometry and Pythagorean number theory. Logic was completely unconnected to computation and
algebra until the nineteenth and twentieth centuries when the work of Boole and Shannon became
foundational for logic and computer science. Around the same time, the relation between logic and
mathematics was tipped upside down by Frege, Dedekind, and Russell, who reshaped logic to be
a content foundation for (parts of) mathematics. These logicist developments are elaborated in
remarks integral to the text where germane.

I also make explicit connections to the other main foundational and philosophical developments
in the early twentieth century. Brouwer’s intuitionistic position on mathematical argumentation
along with some push-back by Hilbert and others is mentioned, and differences between intuitionist
logic and classical logic on issues involving negation are pointed out, particularly with respect to
Proof by Contradiction.

With regard to Hilbert’s formalist philosophy of mathematics, students are pressed to think through
the meaning and value of formalizing mathematics. A formal approach is important for allowing
multiple interpretations or models of mathematical theories, something germane to fields such as
Abstract Algebra, but this is also important for parsing out the logical properties of and connections
between a theory’s axioms, as was seen in the rise of non-Euclidean geometry. Knowing these things
encourages students to distinguish between taking a formal approach for technical mathematical
and metalogical considerations and adopting a formalistic viewpoint on mathematics as a whole.
Formalization is also relevant for computer-aided or computer-generated proofs, such as those
developed for the Four-Color Theorem, a topic in Chapter 8’s Topics in Graph Theory.

Closely connected to these philosophical schools of thought and various nineteenth- and twentieth-
century developments is the praxis of axiomatization with its attendant methodologies of formal-
ization and abstraction.

Axiomatization first comes up in the text for a theory having a familiar intended interpretation:
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Peano Arithmetic. Computational axioms were first isolated and stressed in mid-nineteenth century
British algebra (De Morgan, Hamilton), being later systematized by Dedekind and Peano in the
late 1880s. This brought ordinary arithmetic into the axiomatic fold. Students are often surprised
that properties of the computational apparatus they’ve used all their lives can be deduced (with
some work) from a few definitions and five axioms characterizing the counting process, including the
seminal Axiom of Induction. As a student once observed to me about this whole process, “calculus
is easy; it’s arithmetic that’s hard!”

Axiomatization next appears in the context of studying Set Theory. After learning about Cantor’s
and Dedekind’s work in elucidating the nature of infinite collections, students are informally intro-
duced to axiomatic Set Theory. This was first proposed by Zermelo primarily as a way to organize
and deductively justify some key set-theoretic results (such as the Well-Ordering Theorem) but
also in order to avoid Set Theory’s paradoxes (such as Russell’s Paradox). Its use as a founda-
tion for mathematics is illustrated by noting how Peano Arithmetic and other mathematical ideas
and results can be modeled (or coded) inside Set Theory (e.g., by von Neumann in 1923), and its
impact on later developments in mathematics education such as the New Math Revolution of the
’60s is pointed out. Metalogical concerns such as Gödel’s and Cohen’s independence results for the
Continuum Hypothesis are also cited, though obviously not argued.

Finally, axiomatization is introduced with respect to exploring Boolean lattices, generalizing and
systematizing its results as Boolean Algebra. This leads students deeper into contemporary math-
ematics, stretching them to think more abstractly about mathematical axioms and models, some-
thing they will experience in spades in certain upper-level mathematics courses.

As I’m more of a historian than a philosopher, my default is to include historical material wher-
ever relevant. Thus, the text highlights the significance of scores of people—for Logic (Aristotle,
Boole, Leibniz, De Morgan, Frege, Russell, Tarski, Shannon, Jaśkowski); for Set Theory (Cantor,
Dedekind, Venn, Zermelo, Gödel); and for Graph Theory (Euler, Hamilton, Kuratowski, Kempe,
Heawood)—about 70 mathematicians in all. Naturally, I can’t do much besides mention most of
these people, but doing this in context is more than name-dropping: it gives students and professors
a hook for further historical exploration.

So, the text raises issues both of philosophical and historical interest. What about connections to
religious outlooks? Are there even any, and if so, can such things be broached in a commercial
textbook? This question can be answered along several different lines. Obviously, Christian doxo-
logical reflections on God as the Source and Sustainer of mathematical and logical realities would
be deemed out of bounds by a secular publisher like Springer. Such comments can be integrated
into an instructor’s use of my textbook, however: certain parts of the text provide a stage for
adding such sentiments in a rather natural way. And raising various foundational issues provides
an information platform for evaluating prominent philosophical perspectives from a Christian view-
point. I think aspects of all three or four major early twentieth-century foundational philosophies
can be challenged from the vantage point of a Christian worldview, even while recognizing legiti-
mate advances in logic and mathematics due to their outlook. Rejecting the reductionist tendency
of the logicist program (or of the related set-theoretic foundation), for instance, comports well
with a Christian philosophy that emphasizes the rich multidimensional character of creation. This
non-reductionist outlook is partly what makes me choose a natural deduction approach to logic
over that of Frege and Russell—another reason being that a stress on inference rules as governing
valid argumentation fits better with an emphasis on God’s sovereignty over truth and validity. I
believe that similar sorts of reflections can be made about intuitionist and formalist philosophies
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of mathematics.

There is one point in the book where a connection to Christian theology is explicitly made: Cantor’s
view of infinity was formed through both mathematical and theological reflection on this notion.
I cite this fact because of its historical influence, not because I believe Christian mathematicians
should anoint Cantor as God’s prophet of the infinite. Yet noting this connection provides an
opportunity to ponder mathematics’ appropriation of infinity from theology and philosophy, and it
also explains why some mathematicians at the time thought Cantor had lost his way and wandered
off into metaphysics.

5 Concluding Remarks

I hope it’s clear how I’ve used perspectival elements to integrate, contextualize, and enrich some
fairly standard discrete mathematics material. Still, I know that my particular emphasis and choice
of topics isn’t for everyone: Discrete Mathematics is a bit of an amorphous grab-bag that can be
taken in many different directions. I’ve chosen topics that connect with one another in natural
ways. There is some flexibility in the book to tailor topics to fit one’s interests or needs, though,
and instructors can always proceed at their own pace. Some sections can be combined by omitting
certain subsections, and extensive exercise sets encourage exploring topics in more depth if that
is wanted; an instructor’s Solution Manual provides complete solutions to half of the book’s 1500
problems.

In conclusion, while I have emphasized the historical and philosophical features of my book, treating
it as a case study in how one can incorporate perspectival elements in a technical mathematics
text, I believe that anyone who examines the text will recognize that it adheres to the advice I was
given as an undergraduate: do your philosophizing and historicizing in the context of substantial
mathematical considerations.
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Abstract

This article supports the epistemological claim that sound human reasoning about ultimate
knowledge is either foundational or circularly justified. In particular, questions which naturally
arise in theology, philosophy, and related disciplines, to the extent that they rationally treat
ultimate knowledge, are necessarily supported in one of these ways. Comparisons with, contrasts
to, and analogies from mathematics are given to illustrate and enhance this central claim.

1 Introduction

One of the most basic goals of any rational human enterprise is to intellectually justify one’s truth
claims. This article will investigate the nature of that justification process. We have in mind what
we will call “propositional justification,” that is, justification of propositions by propositions (truth-
valued statements). Words like “support” or “justification” will refer to this notion of propositional
justification unless specified otherwise.

Our aim is to examine the structure of rational justification, not to arbitrate rationality itself. The
question we seek to answer is not “is proposition P rationally held?” but rather, “given a theory
of warrant,1 what is the nature of the structure of the rational support of proposition P?”

It is natural to relate these epistemological issues to mathematics as the latter is commonly regarded
as occupying rarefied air, perhaps even uniquely, in its theoretical completeness. Famously adored
as the “queen of the sciences”2 with the “most uncontroversial examples of proof,” [11, p. 56] if
something is observed in mathematical thinking, it is often expected to apply to other (maybe even
all) rational endeavors. Examining the interplay between mathematics and ultimate justification
for truth claims is therefore worthwhile and will be taken up in this article.

This article is split into three sections. Section 2 states and argues for the main thesis. Section 3 uses
mathematics as a case study to make connections between the notions of foundational knowledge
and circular reasoning, particularly noting how circularity is avoided by the major schools of thought
in the philosophy of math. Section 4 briefly addresses some questions which naturally follow.

1A set of (and relations between) standards or criteria by which rationality is measured; it goes by other names
as well.

2While applying this term to mathematics is attributed to Carl Friedrich Gauss, math was not its original object.
It referred to theology (of all disciplines!) during the Middle Ages. See [4, p. 213].
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2 The Argument

2.1 Assumptions and Definitions

It would be a Herculean (or impossible) task to fairly and incontrovertibly list every assump-
tion; complete, untainted epistemological self-awareness might be only a theoretical ideal. We will
nonetheless attempt to identify the ones most fundamental and most relevant to the present topic.

Our primary object in this section will be the “hypothetical belief set” (HBS) of a fixed human
agent H at a fixed time t. It is “hypothetical” because we allow the set to include beliefs that H
would hold if prompted appropriately, but which H might not otherwise believe or even conceive of.
The set HBS, sometimes written HBSt to emphasize the dependence on t, along with the relations
among its elements, is the noetic structure of H. [20, p. 48] We will assume H’s thoughts are not
past eternal and that it takes some positive amount of time for H to form a thought. Coupled with
the dependence on t, we may thus assume that the cardinality of HBSt is finite.

We will assume the laws of logic and general principles of rationality which are too many (and,
likely, too familiar) to enumerate. But as they will be essential terms, let us define them a bit more
thoroughly.3 Here, we will consider logic to be formal, classical logic.4 Definitions include

• “a formal, scientific method of examining or thinking about ideas;”5

• “a science that deals with the principles and criteria of validity of inference and demonstration:
the science of the formal principles of reasoning;”6

• “the science of thinking about or explaining the reason for something using formal methods.”7

We consider deduction to be the process of drawing conclusions by applying the rules of logic to
one or more statements (elements of HBS). Rationality is

• “the quality of being based on clear thought and reason, or of making decisions based on clear
thought and reason;”8

• “the quality or state of being agreeable to reason;”9

• “the fact of being based on reason rather than emotions.”10

3We take the notions of rationality and logic to be rationally foundational (as seems to be required of rational
human endeavors), but not “semantically foundational.” As will be discussed throughout the article, there are two
sets in any rational human endeavor to which our thesis applies: rational support and definitions. An element which
appears in both sets need not be ultimate (in the sense defined later in the section) in both sets, modulo the caveat
discussed below that definitions can be converted to truth claims. In this article, “rationality” is considered ultimate
in the former set, but not the latter. Nonetheless, the definitions we give should be taken to be informal.

4As opposed to the informal use of the word “logic,” which can refer to any kind of reasoning, and as opposed to
nonstandard formal logics. If one insists on a nonstandard logic, it is likely to be unproblematic for this article.

5https://dictionary.cambridge.org/us/dictionary/english/logic, accessed June 20, 2022.
6https://www.merriam-webster.com/dictionary/logic, accessed June 20, 2022.
7https://www.oxfordlearnersdictionaries.com/us/definition/english/logic_1?q=logic, accessed June 20,

2022.
8https://dictionary.cambridge.org/us/dictionary/english/rationality, accessed June 20, 2022.
9https://www.merriam-webster.com/dictionary/rationality, accessed June 20, 2022.

10https://www.oxfordlearnersdictionaries.com/us/definition/english/rationality, accessed June 20,
2022.

ACMS Journal and Proceedings Page 196 23rd Biennial Conference

https://dictionary.cambridge.org/us/dictionary/english/logic
https://www.merriam-webster.com/dictionary/logic
https://www.oxfordlearnersdictionaries.com/us/definition/english/logic_1?q=logic
https://dictionary.cambridge.org/us/dictionary/english/rationality
https://www.merriam-webster.com/dictionary/rationality
https://www.oxfordlearnersdictionaries.com/us/definition/english/rationality


Accordingly, we will call an intellectual endeavor or claim rational if it is ultimately supported by
reasons. What constitutes a “reason” is a criterion which we do not attempt to define in this article
(beyond noting that a reason must be a truth-valued statement). That is, we will assume that some
theory of warrant has already been accepted; there is much epistemological debate on such topics
on which we (attempt to) remain mostly silent. We simply consider whether a claim is supported
by reasons or not, without regard to whether they are “good reasons.” Note also that there is a
contrast with rationalism, the philosophical view that “regards reason as the chief source and test
of knowledge.”11

We consider, then, irrationality to be the negation of rationality and irrational the negation of
rational; in particular, for brevity, the notion of “arationality” (being outside the arena of reason,
even if not in conflict with it) is subsumed under an umbrella term of irrationality in this article.
Academic disciplines such as theology (the study of religious belief), religion (the pursuit of the
supernatural or supreme existence), and philosophy (the study of the foundational nature of reality)
will be referred to in broad strokes.

By circular reasoning, therefore, we will mean the support of a proposition in HBSt for which
the conclusion is among the premises. We will use the term “circularity” for brevity to refer to
circular human reasoning. It is sometimes referred to in the literature as “begging the question” or
“petitio principii,” though some authors make a distinction among these terms. A proposition will
be considered foundational if it has no propositional support in HBSt.

We will assume an agreed-upon meaning12 of all terms used, with only a few key terms being
explicitly defined. Of course, this is a nearly universal assumption, and any meaning-carrying
dialogue depends on it, so it is not overly ambitious. Nonetheless, given the epistemologically
fundamental nature of the content that follows, adequate epistemological self-awareness dictates
that this assumption be stated, along with the acknowledgement that semantic misunderstandings
are still possible regardless. It is the author’s hope in defining a few key terms that any such
persisting misunderstandings are insignificant to the central thesis.

We fix a claim, P ∈ HBSt, of genuine knowledge about reality, i.e. P is (agreed upon to be) true.
Likewise, we assume a goal of rational investigation of objective truth about reality, as opposed to
statements grounded ultimately in opinion, preference, feeling, or other subjective standards. In
particular, issues raised by the philosophical positions of skepticism, which doubt whether truth
can be known or if there is any objective reality at all, will not be considered herein. Thus, we
will assume that H can justifiably claim to know something. Note also that definitions could be
rephrased as truth claims in the form “term X has meaning Y ;”13 P might be as such.

It is useful to refine the epistemic level of P : either P is ultimate knowledge or it is not. In this
article, ultimate knowledge is the most basic knowledge that H possesses. We will often refer to
such a proposition as an ultimate, or ultimates in plural (using the word “ultimate” as a noun). An
ultimate is something for which H does not have a deeper knowledge level to undergird it. Likewise,
we will call questions about ultimate knowledge “ultimate questions.” What we call “ultimates” in
this article are given many other names depending on the context and author: presupposition, basic
commitment, [11, p. xvii] (properly) basic belief, [20], [11, p. 59], starting point, innate belief, final
authority, foundation, foundational belief, assumption, and so on (and, unfortunately, sometimes

11See https://www.britannica.com/topic/rationalism, accessed June 20, 2022.
12Or “approximate meaning.”
13A similar phenomenon can be seen in mathematics, when sometimes definitions are referred to as axioms; indeed,

“there is little distinction between a mathematical axiom and a definition.” [4, p. 216]
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these terms are used with different meanings).14 It is tempting to equate this notion with the
mathematical notion of axiom (or “hypothesis” to some), but as Christian theologian John Frame
discusses, [11, pp. xxxi-xxxii] and as we shall see shortly, there is a distinction.

The aforementioned assumptions are not necessarily themselves ultimates, but are a practical ne-
cessity to focus the discussion and keep it to a manageable length.

2.2 Primary Thesis: Ultimate Justification for a Truth Claim

What we discuss below is a version of Agrippa’s trilemma, credited to the philosophical skeptic
Agrippa and the Pyrrhonists.15 It is one manifestation of the problem in epistemology regarding
ultimate justification for a truth claim. The nuanced differences of its disparate treatments will
not be essential here.16

Our primary thesis is the claim that

(FC) HBSt contains elements which are foundational or are circularly supported.

We will begin with P to conclude (FC). One can ask for proximate, rational justification of P : why,
or on what rational authority (empirical evidence, logic, the authority of the source from which
P was discovered, or whatever reason might be legitimate according to H’s theory of warrant),
can we say that P is the case?17 Suppose a distinct supporting reason, Q, is given. One could
equally ask for the distinct, proximate, rational justification of Q, call it R. The pattern continues,
descending into a sequence of “why” questions and answers: P, Q, R, . . .. We will call this the support
sequence.18 Under our assumptions, there are only two options19 with regard to the termination
of this sequence (and hence, for the foundations of H’s noetic structure) which we will explore in
turn:

1. the sequence never terminates, continuing to give distinct supporting reasons; or

2. the sequence terminates in finitely many steps, ceasing to give distinct supporting reasons.
14At t, we consider the set of foundational propositions to be a subset of the set of ultimates.
15The essentials of the problem go by other names as well, such as Münchhausen’s trilemma, or Fries’ trilemma.

The term “Münchhausen’s trilemma” is credited to [1]. The present article uses the framework of this trilemma,
while coming to different conclusions than Agrippa and the Pyrrhonists.

16For example, in a work by Greek philosopher Sextus Empiricus, five possible outcomes to the question of ultimate
justification are given. Three of those five are contained in Agrippa’s trilemma, with two additional ones which are
disallowed by our current assumptions: dissent (in our context, this would be to assume that the proposition P is not
agreed to be true) and relation (P appears to be true from the point of view of a certain individual, but that does
not necessarily constitute a statement of the inherent truth of P ; in other words, it is the conclusion that truth does
not refer to an objective reality). See [8]. For a readable overview of the issues in Agrippa’s trilemma, refer to the
Stanford Encyclopedia of Philosophy’s entry on Skepticism; see https://plato.stanford.edu/entries/skepticism/
(accessed July 31, 2022).

17We can consider such a question as a “Chisholm-like question” without the misunderstanding of how such a
question should be taken as in [20, p. 51].

18Could P have a distinct support sequence, say P, E, F, G, . . .? We allow for that possibility. The analysis which
follows will fix a particular sequence, though the conclusions apply to any support sequence which one desires to
choose. The salient characteristic is that P has only finitely many distinct support sequences, which follows since
HBSt is assumed to be finite in size. Thus, fixing just one support sequence suffices.

19The reader may wonder where the third horn of Agrippa’s trilemma is. Two of them are together contained in a
single option: the finite termination of the sequence.

ACMS Journal and Proceedings Page 198 23rd Biennial Conference

https://plato.stanford.edu/entries/skepticism/


2.3 Option 1: The “Endless Why”

This option implies there is an infinite regress of supporting reasons for claim P , a truly endless
sequence of “why” questions and answers. In Agrippa’s trilemma, this is the “infinitism” horn.
This contradicts our assumption that HBS is finite at t, and therefore can be discarded.

Additionally, perhaps enlightening is the observation that, even if the finiteness assumption were
dropped, it is questionable if P could be considered to be genuinely rationally supported. If the
argument supporting P is never complete, is P really supported after all? Is an in-progress proof
really a proof (in any theory of warrant)? One particularly troublesome potentiality: the support
sequence could eventually contain something that breaks our assumptions, and, even if that hasn’t
occurred yet, we may not have sufficient confidence that it won’t occur at one of the future steps.
Such observations demonstrate that, even under slightly more general assumptions, an infinite
support sequence for P is dubious at best, and possibly irrationality “in disguise.”

2.4 Option 2: Foundational or Circular Support

Therefore, the support sequence cannot be truly endless in rational support of H’s genuine knowl-
edge; it must terminate in finitely many steps. That is, some supporting reason Z20 must be the
last distinct supporting reason at t (where we allow for the sequence to terminate in 0 steps, i.e.,
P = Z). That Z, by definition, has no deeper or more fundamental level with distinct reason(s)
supporting it at t, so it is at the ultimate justificatory level. How does Z relate to other elements
of HBSt?

That question is answered in two different ways in Agrippa’s trilemma, the first being foundation-
alism.21 Here, Z is accepted as foundational without further propositional rational defense (though
it may be defended some other way). The support sequence merely stops at Z. Depending on the
nature of Z and the theory of warrant, Z could be considered knowledge without being inferred
from any proposition, including from itself. [20]

The other horn of the trilemma is referred to as coherentism in which Z is part of a mutually
supporting, self-contained theory. This requires a “cycle” of reasons;22 this is circularity.

Therefore, there are only two non-rejected options for the ultimate justification of P :23 foundational
support and circular support.24 Thus we conclude (FC).

Most connections to mathematics will be saved for Section 3, but one is appropriate here. We may
impose a finite directed graph structure on HBSt since we view it as a finite, discrete set with
nonsymmetric relations among (some) pairs of elements. Call this the “knowledge graph” of H and
label it G. 25 Nodes of G are propositions (elements of HBS), and arrows point from one node to

20The termination of the support sequence of P is likely to be a set of reasons rather than one single statement.
For ease of notation, and since the individual elements of such a set need not be separated for our purposes, we will
simply notate the termination Z and treat it as a single reason.

21The related stance of positism, [10] in which Z is simply unjustified (presumably relative to the chosen theory
of warrant), is discarded as it contradicts our assumptions. In being unjustified by its own admission, it represents a
choice that is not rational truth-seeking.

22Note that Z is the final distinct reason. It could be the case in HBSt that the reason given for Z is some other
proposition R already listed in the support sequence, thereby initiating cyclical traversal through the sequence.

23That is, only two options which do not contradict our assumptions.
24The interplay between them is examined deeply in [14].
25This may be a metaphor to add to the list of “raft” and “pyramid.” See [23].
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the others which support it. Every node in a connected26 component of G has at least one arrow
pointing to it or emanating from it. A theorem27 in graph theory tells us that every such graph
contains a cycle (which would indicate circular reasoning in our analogy) or a sink (a node with
no arrows emanating from it; in our analogy, this is a foundational proposition).28 If one accepts
the knowledge graph analogy, then the proof of this theorem offers an alternative proof of (FC).
Perhaps this mathematical analogy can be mined to provide further insight into epistemology.

2.5 Why entertain the plausibility of circular reasoning at all?

Nearly all rational thinkers eschew any form of circular reasoning as logically fallacious. Philosopher
Douglas N. Walton, with an entire book devoted to circular reasoning, [34] explains succinctly why
this is the case: “Arguing in a circle becomes a fallacy by basing it on prior acceptance of the
conclusion to be proved. So the fallacy of begging the question is a systematic tactic to evade
fulfillment of a legitimate burden of proof.” [35, p. 66], [11, pp. 254-5] As philosopher S. Morris
Engel puts it, “if the supporting premises merely repeat or rephrase what is stated in the conclusion,
as in all cases of begging the question, the argument contains no premises and is therefore fallacious.”
[9, p. 147], [11, p. 255] According to theologian Joseph E. Torres, “[i]f question-begging is embraced,
fideism is implied. Fideism is the rejection of a rational [argument].” [31], [11, p. 255]29 Even in
everyday discourse, labeling a putatively intellectual argument to be circular is a death blow.

Why, then, allow for circular reasoning as a plausible option at all? The short answer is that the
rationality of circular (or any other kind of) reasoning is left up to the theory of warrant, and in
this article, we attempt not to evaluate such theories. But there is another layer worth examining.

A variety of circularity is discussed, and evidently promoted, by Christian presuppositional apolo-
gists, a school of thought expounding on the works of theologian Cornelius Van Til. For example,
John Frame defines “circularity” as “an argument in which the conclusion justifies30 itself. All ar-
guments seeking to prove the existence of an ultimate or final authority are circular in this sense.”
[11, p. 291] Philosopher and apologist Greg Bahnsen, often considered the primary popularizer of
Van Til’s work,31 says that this kind of circularity is “involved in a coherent theory (where all the
parts are consistent with or assume each other) and which is required when one reasons about a
precondition for reasoning.” [3, p. 518n122] Theologian R. C. Sproul concurs: “That all reasoning is
ultimately circular in the sense that conclusions are inseparably related to presuppositions is not in
dispute.” [24, p. 70], [11, p. 258] Seeing circularity as a consequence of the finiteness of humanity is
expressed succinctly by Van Til himself, who writes, “[w]e hold it to be true that circular reasoning
is the only reasoning that is possible to finite man” (emphasis added). [33, p. 12], [11, p. 254]

How can serious thinkers seem to accept an argumentation tactic that is clearly fallacious? It seems
that they refer to different types of rational support. When seeking propositional support, as in
this article, there is broad agreement, even among presuppositionalists, that circular reasoning is

26Or, more commonly, “weakly connected.” See [5, p. 163].
27[5, p. 89], Theorem 4.3 proves this result for an undirected graph. The directed version can be found in Lemma

1 at https://www.math.cmu.edu/~af1p/Teaching/GT/CH10.pdf, accessed June 15, 2022.
28Note, then, that a foundational proposition cannot be part of a cycle, but an ultimate might be as per (FC).
29Fideism, beliefs taken on faith alone without any rational support, is widely seen as anti-intellectual.
30It is not entirely clear if Frame’s notion of “justification” is the propositional variety. Similarly, his notion of

“ultimate” seems to refer to a standard or criterion in the theory of warrant rather than to a proposition.
31Rev. Dr. K. Scott Oliphint, expresses this in his comment of [2]. Oliphint says, “For those who want to

understand Van Til, whether to agree or disagree, at least two things are both essential and too often neglected. The
first is to read Van Til, the second is to read Greg Bahnsen.” (Back cover).
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fallacious. The variety of circularity endorsed by presuppositionalists is of a different type, a type
we will call authoritative support,32 referring to the criteria which one uses to judge veracity or
rationality. Frame recognizes the necessity: “[W]hen one is arguing for an ultimate criterion, . . .
one must use criteria compatible with that conclusion. If that is circularity, then everybody is guilty
of circularity.” [11, p. 11]33 In other words, rhetorically, by what standard can an ultimate criterion
of knowledge be aptly declared suitable, if not by itself (for, if not by itself, then the criterion is not
ultimate)?34 By what criteria of knowledge shall we judge our criteria of knowledge but themselves?
To emphasize the distinction between fallacious circular reasoning of propositional support and
purported circularity of authoritative support, Torres terms the latter “circular coherence.” [31],
[11, p. 256]35 This is the version of circularity endorsed by the presuppositionalist school.

It is worth emphasizing that this type of circularity and the question begging fallacy (petitio
principii) are distinct notions. According to Torres, a presuppositionalist, “Van Tillians, at least
implicitly, distinguish between circular coherence and begging the question, embracing the former
and rejecting the latter.” [11, p. 258]36 The circularity of presuppositionalists is a requirement of
the theory of warrant to use only reasons within argumentation (arrows in G) that comport with
the ultimates (each would appear as a node in G, either a sink or as part of a cycle); thus it is some
relation between arrows and ultimates (specific nodes) which does not appear explicitly in G (in
particular, presuppositional circularity does not require a cycle in G). A type of “circle” appears in
that ultimates and the theory of warrant are self-consistent,37 but this is not a cycle in G. Question
begging is a relation between various nodes of G and is evident by the presence of a cycle in G. As
the presuppositional notion of circularity is distinct from the familiar concept of circular reasoning,
criticism of presuppositionalists for ambiguity in language may well be warranted.38

Thus the contrast of support type (propositional versus authoritative) demonstrates how the presup-
positional notion of circularity is distinct from and not contradictory to the common understanding
which rightly disparages circular reasoning. As authoritative support reveals itself in evaluating
rationality and not the structure among propositions, questions of authoritative support reside
in the theory of warrant. Hence, we do not judge such positions here, but underscore the point
that permissibility of circularity in authoritative support is not inconsistent with fallaciousness of
circularity in propositional support.

32Perhaps the term “foundational support” would be equally descriptive.
33Indeed, “reasoning in a vicious circle is the only alternative to reasoning in a circle.” [32, p. 24], [11, p. 257] In the

words of philosopher Richard Pratt, “in argumentation, reasoning should be linear,” but circularity of the “process by
which finite minds attain knowledge to be used in arguments” is “inescapable.” [22], [11, p. 257] (emphasis added).

34It is in this sense that ultimates occupy a “privileged position” in rational argumentation in that they exhibit
special epistemological properties not seen in non-ultimates. See Bahnsen’s lecture “Reasoning With Unbelievers,”
beginning at 25:20: https://www.youtube.com/watch?v=6RBz-zAWoKk, accessed December 8, 2021. See also the
discussion of the “meta” relationship that ultimates have to the support sequence in Sections 3.7, 4.1.

35More from Torres on this (and related topics) can be found at “Presuppositionalism and Circularity. . . Again?”
at https://apolojet.wordpress.com/2012/03/15/presuppositionalism-and-circularity-again/, accessed June
20, 2022. A similar bifurcation of types of ultimates, propositional versus authoritative, might be in order as well.

36Other terms are used for the distinction between circular coherence and question begging: Frame calls the former
circularity “broad” and the latter “narrow.” [11, p. 14] Torres labels them “virtuous” and “vicious,” respectively.
[31], [11, p. 255] As Torres explains, “the main distinguishing mark between these two forms of circularity is how one
handles the burden of proof, or evidential priority.” [31], [11, p. 264] Thus, the question-begging fallacy is “vicious,”
whereas circular coherence is seen as “virtuous.” (cf. Russell’s “vicious circle principle” discussed in Section 3.)

37That is, the ultimate criteria underlie the reasoning used, even in (linear) argumentation for their own legitimacy,
in a way that non-ultimates do not. This “circle,” however, may be non-propositional in nature, and hence not be
circular reasoning as traditionally understood.

38Frame recognizes the risk: “I don’t care very much whether the Christian apologist accepts or rejects the term
circular to describe his argument. There are obvious dangers of misunderstanding in using it...I am more inclined
now to say to my critics, ‘Granted your definition of circularity, I don’t believe in it.’ " [11, p. 11n19]
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3 Connections to Mathematics

3.1 The Epistemic Characteristics

It is justifiable to bring mathematics into this discussion so long as we assume that at least one
statement of mathematics is genuine knowledge (to play the role of P from Section 2). We add
that assumption for this section.

Mainstream mathematics today follows the axiomatic method.39 It begins40 with a set of (for-
mally undefined) terms41 and axioms (asserted-but-unquestioned assumptions, taken to be true
without proof),42 and uses logical deduction, enhanced by intuition,43 to justify new statements.
For convenience, we will give names to two epistemic characteristics exhibited by this process of
mathematics. Mathematics

1. (EC1: starts somewhere) begins with foundational principles, recognizing that mathematical
knowledge must start with something;44 and

2. (EC2: restricts the scope) restricts what is properly a “mathematical question” and what
is not. Some questions, even some which refer to indisputably mathematical objects, are
not mathematical questions. In particular, there are logical arguments which are not part of
mathematics (and are usually placed within the realm of theology and/or philosophy) because
those arguments refer to nonmathematical questions or objects.

The content of mathematics is whatever can be concluded (according to the methods allowable in
the given philosophical school, as discussed below) from the starting point(s) of EC1 and within the
bounds of EC2. The process of mathematics can be seen through the lens of propositional support
as discussed in Section 2. On the basis of the elements of EC1 (principally axioms and definitions),
mathematics is frequently seen as being foundationalist, [4, p. 215], [16, pp. 51-2] even if artificially
so vis-à-vis EC2.

EC1 implies that the “why” support sequence for a statement of mathematical knowledge terminates
in finitely many steps at some (set of) reason(s), X, which is (are) the most fundamental when
viewed inside the theory at hand. X is a set of one or more axioms. The restriction accomplished by
EC2 is made manifest in practice by choosing X not to be an ultimate and only asking questions of
the objects involved which do not require the intake of ultimates. Thus, for the philosophical schools
considered below, mathematical inquiry halts its inspection before reaching the epistemic level of
ultimates. As ultimates are not part of mathematics, mathematics remains mum on any issues
regarding circularity in the authoritative support (cf. Section 2.5). Thus, any circular reasoning
arising in mathematics is indeed rightly seen as problematic.

39The discipline settled on this more structured approach “since the free use of our conceptions. . . led to disaster,”
specifically the paradoxes that arose from Cantorian set theory, discussed below. [17, p. 40]

40That is, the theoretical construct begins in the way described. The process in which humans engage – the process
of doing mathematics – rarely proceeds in this order chronologically.

41This idea has a long heritage in mathematics. As far back as Aristotle it was acknowledged that some terms “must
be undefined or else there would be no starting point.” [18, p. 20] (Note the lurking foundationalism!) Interestingly,
Euclid’s Elements infamously attempted to define all concepts used, despite there being historical indications that he
was aware of Aristotle’s works. Subsequently, the work of Euclid had an impact on “practically all the mathematicians
who followed him for two thousand years.” [18, pp. 101-2] We will comment further on this in the subsection on
formalism.

42Formally, one could view an axiom as proving itself.
43One might prefer the word “creativity” instead, or any of several related ideas.
44This is expressed nicely by 18th century Scottish philosopher Thomas Reid in [7], esp. p. 148.
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We will demonstrate for various philosophical schools how EC1 and EC2 are exhibited.45 We will
give special attention to ZFC set theory and the “Big Three.”46 Our goal is not an exhaustive study
of the many philosophies of mathematics, but a brief introduction to show how each one considered
expresses the ECs. In particular, every philosophy discussed below shares the same question for
which the examination would violate EC2, namely, “once the foundational elements of EC1 are
chosen, why are they the correct ones?” One could defend the choice of “these axioms instead of
those,” but the point is that such a defense is a philosophical argument rather than a mathematical
one. Additional comments on EC2 will be mentioned below as appropriate. Perhaps our discussion
will also give the reader a sense for humanity’s intellectual limitations.47

3.2 ZFC Set Theory: Object Language, Metalanguage, and Russell’s Paradox

The default approach to mainstream mathematics today is termed ZFC set theory, the acronym
referring to a list of 8-9 (depending on the specific formulation) Zermelo-Fraenkel axioms, along
with the axiom of choice.48 The genesis of set theory as its own subfield is often credited to
Georg Cantor and his pioneering work on infinite series, work in which complications were quickly
discovered. [28, pp. 1-2] Cantor’s work made implicit use of the axiom of abstraction which asserted
the existence of a set whose members are determined by sharing any given property. A 1901 letter
from Bertrand Russell to Gottlob Frege brought to light a fatal flaw with the use of this axiom. To
see the flaw, form the set S whose members share the property that the members are not members
of themselves. Is S a member of itself? If so, then by its own defining property, S is not a member
of itself. And if not, then, again by the defining property, S is indeed a member of itself. In both
cases, S is simultaneously a member of itself and not a member of itself. This contradiction was
termed “Russell’s Paradox” and forced mathematicians to concede the logical flaw in the seemingly
innocuous, intuitive realization of set theory afforded by the axiom of abstraction. [28, pp. 5-8]

Russell himself gave an explanation for this state of affairs in 1905. The problem lies with the use
of impredicative definitions, a term first used by Poincaré in 1906, “wherein an object is defined (or
described) in terms of a class of objects which contains the object being defined. Such definitions
are illegitimate” since they are circular; hence the related name, Russell’s “vicious circle principle.”
[18, pp. 204-7], [25, p. 116], [17, p. 42]49 Notions such as a “set of all sets” are impredicative and
hence barred.50 A subtle but powerful modification, introduced by Ernst Zermelo in 1908, led to a
resolution of Russell’s Paradox and was included in ZFC as the “axiom schema of separation.” It
required that a given set first be known to exist; then, members of that set with a given property
can be collected in a subset. Other paradoxes (or contradictions) were found in early set theory as
well, the details of which we leave to other works. [28, pp. 5-12], [18, pp. 204-7], ch. IX.

What are ZFC’s intellectual foundations (EC1)? The axioms and formally undefined terms such
45We give only very brief introductions to the schools of thought. For more, see [18]; [29], especially chapters 17–20;

[25]; [17], especially chapter III; [12], Part 5.
46Term courtesy of [25], Part III.
47Compare the discussion in [21, pp. 103-1].
48We leave an enumeration of the axioms to the references as it is technical and inessential to the current article.

For details, see [28]; [26]; [18], especially chapters VIII–XII; [12], especially Entry 5.3; [17], especially chapter III;
[30]. For a less technical introduction, see [21], App. E.

49Circularity in such definitions is indeed problematic, even in view of Section 2.5, since propositional support is
our goal.

50Some mathematicians and philosophers have defended the use of impredicative definitions. This debate is beyond
the scope of this article. See [25, pp. 128, 180], [17, pp. 42-5]. The Burali-Forti paradox regarding the set of all ordinals
is another closely related concept too technical for our coverage. See [28, pp. 8, 133].
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as “set” are taken as given and unquestioned.51

How does ZFC exhibit EC2? Through an object language/metalanguage distinction.52 Such a
distinction is what allowed the paradoxes to be resolved. The object language is the language in
which we discuss the mathematical entities themselves, whether they be sets or numbers or anything
else, and the metalanguage is the “language in which we talk about the object language.” [28, p. 11]
The metalanguage includes the object language, but not vice versa. Indeed, this relationship is
what allows us to leave the notion of set formally undefined in the object language and yet still
talk about and understand it in the metalanguage. Whereas axioms or definitions are treated as
ultimates (here, synonymous with “foundations”) when doing mathematics, they are only ultimate
with respect to the object language, not the metalanguage.53 This distinction makes it possible
to “get outside” of set theory (and thus mathematics) to discuss mathematical objects/notions
without doing mathematics (and, hence, without being unwittingly restricted by its methods or
limitations). Indeed, much of the history of mathematics since the late 19th century demonstrates
the utility of making this distinction. As Suppes summarizes,

Every one of these paradoxes arises from having available in the language expressions
for referring to other expressions in the language. Any language with such unlimited
means of expression is perforce inconsistent. Consequently it is important to distin-
guish between the object language – here the language in which we talk about sets –
and the metalanguage, that is, the language in which we talk about the object lan-
guage. . . In other words, we avoid these paradoxes by severely restricting the richness
of our language. [28, p. 11]

Let us illustrate this with our P, Z, and X notation from above. If P is a statement of knowledge
in mathematics, a complete support sequence of P (a proof of P ) could be written like “P because
Q because R because . . . because X because Y because Z.” The supporting reasons up to X would
be considered part of mathematics, and at that point, the mathematical proof (the use of the
object language) would stop.54 Y and Z would be statements in rational human endeavors which
fall outside of mathematics proper, and thus would be expressions in the metalanguage which are
outside of the object language.

3.3 Logicism

Once the set theory paradoxes were discovered, the question of the consistency (freedom from
contradiction) of mathematics was brought front and center, with the logistic school being the first
serious attempt to address it. [18, p. 216] The school credits its founding to Frege in the late 1800s
(though its main idea “can be traced back to Leibniz” [18, p. 217]), and it saw much development in
the early 1900s from mathematicians of renown like Peano, Russell, and Whitehead. The magnum
opus of the school was Russell and Whitehead’s Principia Mathematica, or Principia for short
(which, in particular, included the famous theory of types by which Russell and Whitehead avoided
falling victim to Russell’s Paradox). [26, p. 237] “The purpose of logicism was to show that classical

51Similar comments apply equally well to Russellian type theory, von Neumann-Bernays-Gödel set theory, and
other, alternative set-theoretic foundations.

52Some authors use the term “syntax language” instead of metalanguage. [17, p. 63]
53Kline offers an analogy at [18, p. 250]. “If one wished to study the effectiveness or comprehensiveness of the

Japanese language, to do so in Japanese would handicap the analysis because it might be subject to the limitations
of Japanese. However, if English is an effective language, one might use English to study Japanese.”

54Formally, X would be one or more axioms, though in practice most mathematical proofs stop short of this.
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mathematics is part of logic.” [29, p. 122] This would transfer any foundational questions about the
nature of mathematics into the realm of logic, the consistency of which seemed firmly established.

Principia “may be considered as a formal set theory” analogous to ZFC. [29, p. 122] Thus the
primary goal became to show that each of the axioms of that set theory, from which flow all of
classical mathematics, are themselves part of (first order) logic. This venture failed since “at least
two of these axioms, namely, the axiom of infinity and the axiom of choice, cannot possibly be
considered as logical propositions.” [29, p. 123]55 Mathematicians accept the axiom of infinity, the
statement that infinite sets exist, “in virtue of its content [i.e. from presupposed familiarity with
infinite sets] and not in virtue of its syntactical form,” the latter of which would be necessary to
consider it as a logical proposition. [29, p. 124]

Logicism exhibits EC1 by accepting first-order logic as mathematics’ starting point. Moreover,
“Frege proved that each natural number exists, but his proof is impredicative, violating the type
restrictions [of Russell’s type theory]. Russell had to assume the existence of enough individuals
[type 0 objects which are neither classes nor sets] for each natural number to exist.” [25, p. 119]

Though logicism is considered to have failed in its primary goal, it remains highly influential in
modern mathematics. “In fact, it was logicism which started mathematical logic in a serious way.”
[29, p. 124]56

3.4 Intuitionism

Lying in stark contrast to logicism is intuitionism, which sees mathematics, even classical math-
ematics, very differently. Here, “mathematics should be defined as a mental activity and not as
a set of theorems (as was done. . . [in] logicism).” [29, p. 126] “Intuition determines the soundness
and acceptability of ideas, not experience or logic.” [18, p. 235] In fact, intuitionism even questions
whether the principles of logic have absolute validity. [17, p. 46] Moreover, to be considered legit-
imate to intuitionists, the mental activity must be constructive. Objects can only be considered
to exist if one has engaged in every mental step to formulate completely that object, beginning
with, for example, the “primordial intuition” for the number 1. [29, p. 125], [17, p. 49] A precise
definition of “constructive” is debatable, but, for example, “Kleene saw that he could translate it
as ‘compute,’ which he had precisely defined.” [17, p. iv]

Intuitionism traces many of its ideas back to Kantian philosophy. [25, Ch. 7, Sec. 2] Additionally,
“just as logicism is related to [philosophical] realism, intuitionism is related to the philosophy called
‘conceptualism.’ ” [29, p. 128] Mathematicians such as Descartes and Pascal had advocated for
a leading role of human intuition, and the mantle was taken up by such luminaries as Kronecker,
Borel, Lebesgue, Poincaré, Baire, and, especially, L. E. J. Brouwer. [18, pp. 230-1, 234]

Many mathematicians consider intuitionism unnecessarily restrictive on the tools available to them.
For example, the law of the excluded middle (the principle that either a statement or its negation,
but not both, is true) is considered invalid mathematics by many intuitionists. [29, p. 126], [18,
p. 237], [25, pp. 173-4], [17, pp. 47-8] The constructive restriction likewise eliminates the validity

55In Russell’s formulation, it was the axiom of reducibility which was contentious. “The axiom of reducibility for
propositions say [sic] that any proposition of higher type is equivalent to one of first order.” [18, p. 222] Russell and
Whitehead admitted that this “axiom has a purely pragmatic justification: it leads to the desired results, and to no
others.” [17, p. 45]

56For a treatment of mathematical logic, see [30]. More on the logistic school can be found in [18], chapter X; [17],
chapter III; [25], chapter 5.
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of many existence proofs in mathematics. [18, pp. 238-9] Further, constructive proofs are often so
much lengthier and more complex that opponents see the burden as too great. Even more troubling,
there are theorems which are true in intuitionistic mathematics but false in classical mathematics.57

This does not bother intuitionists: while the logicists sought to ground all of classical mathematics,
intuitionists do not consider all of classical mathematics legitimate, and the illegitimate parts need
no grounding. Instead, intuitionists have the goal of giving “a valid definition of mathematics
and then ‘wait and see’ what mathematics comes out of it,” fully expecting that some of classical
mathematics will never be realized this way. [29, p. 126] “Brouwer recognized that intuitionistic
mathematics is not a mere restriction of classical mathematics, but is incompatible with it.” [25,
p. 184] More generally, “as a substitute for classical mathematics [intuitionism] has turned out to
be less powerful, and in many ways more complicated to develop.” [17, pp. 52-3] For reasons such as
these, this is a philosophical school that the majority of mathematicians have repudiated. And, as
with virtually all philosophical schools, disagreements within intuitionism exist as well. [18, p. 244]

“According to intuitionistic philosophy, all human beings have a primordial intuition for the natural
numbers within them. . . we have an immediate certainty as to what is meant by the number 1. . . ”
[29, p. 125] and thus EC1 is manifest in intuitionism. As Leopold Kronecker famously quipped,
“God made the integers; all the rest is the work of man” (quoted in [18, p. 232]). Brouwer took
mathematical notions like addition and mathematical induction to be intuitively clear, hence foun-
dational, also. [18, p. 235] Even so, intuitionism places mathematics at a higher epistemic level (i.e.
closer to ultimate) than do most other philosophies of mathematics. Since mathematics is “iden-
tical with the exact part of our thinking [since it is a mental activity]. . . no science, in particular
philosophy or logic, can be a presupposition for mathematics. It would be [fallaciously] circular to
apply any philosophical or logical principles as means of proof, since mathematical conceptions are
already presupposed in the formation of such principles.58 [Mathematics has] no other source than
an intuition, which. . . [is] immediately clear” (see [17, p. 51], quoting a work from Heyting).

Intuitionism’s influence upon the understanding of mathematical existence, as well as on the related
school of constructivism, remain significant today. [18, p. 244], [25, p. 184] Also, “the possibility of
an intuitionistic reconstruction of classical mathematics. . . is not to be ruled out.” [17, p. 53]

3.5 Formalism

As a critic of both the logistic and intuitionist schools, with special vitriol for intuitionism, [18,
p. 246] David Hilbert is the primary figure in the formalist school. (That said, many of the ba-
sic notions existed before his “Hilbert program” was set in motion around 1910.) The objective
of formalism is, as the name suggests, to formalize a given axiomatization using methods which
Hilbert called “finitary,” a somewhat subtle notion which we need not attempt to define here. [29,
pp. 128, 131], [18, p. 250] The formalization process involves creating a first order language for the
axiomatized theory by enumerating a vocabulary: symbols for items like quantifiers, the equality
relation, connectives (“not,” “and,” “or,” etc.), variables, and the undefined terms particular to
the theory. While this process envelops the theory with rigidity, perhaps constraining free-flowing
creativity, it has the advantage of allowing one to study the theory itself via the tools of mathemati-
cal inquiry (an undertaking appropriately termed “metamathematics”).59 Hilbert’s purpose was to
prove mathematically that mathematics itself was consistent, [29, pp. 128-30] and even further, to

57For example, in intuitionistic mathematics, the statement that “every real-valued function which is defined for
all real numbers is continuous” is true. [29, p. 127]

58Intuitionists might therefore revise EC2, though not dispose of it.
59For a thorough discussion of metamathematics, see [17].
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prove the completeness of the mathematical enterprise; that is, that “the axioms. . . are adequate to
establish the correctness or falsity of any meaningful assertion that involves the concepts” of mathe-
matics. [18, p. 158] For Hilbert, these twin ventures would establish “the certitude of mathematical
methods” (quoted in [25, p. 158]).

Philosophically, logicism relates to realism, and intuitionism relates to conceptualism, with the
philosophical leaning of formalism being nominalism. [29, p. 131] Nominalism’s focus is on the
“names” of the objects it treats, as its Latin root word suggests. For a formalist, mathematical
objects need not have any existence beyond the name (term, symbol) given to them within the
theory. One consequence is that “anything at all can play the role of the undefined primitives. . . so
long as the axioms are satisfied.” [25, p. 151]60 No intuitive meaning is needed. Hilbert, alluding
to Euclid’s inadequate definitions,61 noted that the “meaning” of the undefined terms is given only
in “the relations of points, lines, and planes to each other – via the axiomatization. All we can
provide is an implicit definition of the terminology” by specifying their properties through the
stated axioms. [25, p. 156]62 The formal names can then be manipulated according to the rules
set forth in the first order language, not unlike the way one plays the game of chess by moving
the different pieces according to the game’s rules. [29, p. 131] This link is strong enough to have
birthed a subschool referred to as “game formalism.” [25, p. 144] It is interesting to note that
Hilbert developed these notions specifically to avoid circularity in mathematical reasoning, and
for that he required that foundational axioms and definitions be asserted (in the axiomatization).
This suggests an implicit agreement with the current article’s thesis that the rational alternative
to foundationalism is circularity.63

The failure of formalism to prove the consistency and completeness of mathematics is now famous.
Kurt Gödel’s Incompleteness Theorems of the 1930s comprised the fatal blow. [29, p. 130] By
1930, some corners of mathematics had been proven to be consistent and complete (some were even
proved by Gödel himself),64 but these results did not extend to the whole of mathematics. His
incompleteness theorems state that, “if any formal theory T adequate to embrace the theory of
whole numbers is consistent, then T is incomplete. This means that there is a meaningful. . . [and]
true statement of number theory which is not provable and so is undecidable.” [18, p. 261] Putting
the Big Three philosophical schools in its crosshairs, “the consistency of any mathematical system
that is extensive enough to embrace even the arithmetic of whole numbers cannot be established
by the logical principles adopted by the several foundational schools.” [18, p. 261] In other words,
“no axiom system for mathematics as we know it is powerful enough to lead to a proof of its own
consistency.” [29, p. 134], [25, p. 167]

60In [18], Kline includes a similar discussion of undefined terms in mathematics in the 19th century. The axioms in
a deductive system give an “implicit definition” of the terms by telling us how they can be used and what one knows
about them. Thus, the undefined terms in a deductive system “can be interpreted to be anything that satisfies the
axioms,” introducing “a new level of abstraction” in mathematics; see [18, pp. 191ff.].

61For example, Euclid defined a “point” as “that which has no parts.” [25, p. 156] For Hilbert, such vagueness in
definition does more harm than good. In such a situation, “everything gets lost and becomes vague and tangled and
degenerates into a game of hide and seek.” Quoted in [25, p. 156]. Regarding Euclid, it was also observed (before
Hilbert) that in his Elements, “flaws had arisen because Euclid has been misled by his visual imagery. . . [H]e had
inadvertently assumed certain properties of [points and lines], without stating them as axioms.” [26, p. 243]

62As Hilbert put it: “I have become convinced that the more subtle parts of mathematics. . . can be treated with
certainty only in this way; otherwise one is only going around in a circle.” Quoted in [25, p. 157]. Regarding the
development of logic and arithmetic, he advocated for a “partly simultaneous development,” essentially a set of
co-foundational principles, in order to avoid “a vicious circle and. . . paradoxes.” Quoted in [29, p. 111].

63It is even referred to as “the circular definition problem.” [4, p. 122]
64Notably, first order predicate calculus. See [18, p. 260].
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The implications to the mathematical enterprise were far-reaching and led to further unsettling
results: a mathematical proof might have pristine use of logic internally, but there was now no
guarantee that mathematics more broadly was logically meaningful at all. [26, p. 244] It is reported
that Hilbert became furious when he learned of Gödel’s work, but that fury has given way in the
mathematical community either to unease or, more commonly, indifference toward the philosophy
of the foundations of mathematics. [26, p. 245], [29, p. 132] A fuller account of these issues (crises!)
will be left to the references.65

What about the epistemic characteristics’ relationship to formalism? On EC1, formalism begins
with an axiomatized theory (a set of axioms and undefined terms), so the items in such a theory
are deemed to be supplied beforehand.

Regarding EC2, “one has to talk about the [first order] language L as one object, and while
doing this, one is not talking within that safe language L itself, . . . [but in] ordinary, everyday
language. . . [In so doing,] there is of course every danger that contradictions, in fact, any kind of
error, may slip in.” [29, pp. 130-1]66 Hilbert’s solution was the aforementioned insistence on finitary
reasoning, a restriction which demonstrates EC2. EC2 is displayed perhaps even more clearly by
Gödel’s rebuke of the formalist school. Whereas Gödel proved that a mathematical system cannot
show its own consistency, at least some of the undecidable statements in a formal system can be
shown to be true by informal arguments. [18, p. 263] As Gödel put it, “it is necessary to go
beyond the framework of what is, in Hilbert’s sense, finitary mathematics if one wants to prove
consistency of classical mathematics.”67 And again, “the methods which we must trust in the proof
[of consistency] must include some which lie outside the collection of the methods formalized in the
system.” [17, p. 211] Natural, interesting, and even crucial questions about mathematics must use
tools which transcend the discipline. Since such tools evidently exist, Gödel’s theorems substantiate
the claim that mathematical knowledge is not ultimate knowledge.

Despite the formalist’s failure in their initial goal, the school has had immense, ongoing impact on
the way mathematics is done today. Fields such as metamathematics or proof theory,68 as well
as “modern mathematical logic and its various offshoots, such as model theory, recursive function
theory, etc.” [29, p. 130] owe an immeasurable debt to formalism. The emphasis on stripping
objects of their “unnecessary” features (whatever is not pertinent to the logical structure), and the
recognition that physical intuition can be misleading, help explain why “so much of the abstraction
of early 20th century mathematics stemmed from Hilbert’s viewpoint.” [26, p. 243], [17, pp. 54-5]

3.6 Other Philosophies of Mathematics

For each of the philosophical schools given above, there remain adherents of (modified versions
of) them,69 but they don’t exhaust mathematicians’ and philosophers’ present-day views. We will
make passing mention of some other selected philosophies of mathematics, some of which overlap the
above (and each other). As described by theologian and mathematician Vern Poythress, “Platonism
says that numbers and mathematics belong to a realm of abstract ideas, a realm that exists before
mathematicians begin to study it.” [21, p. 153] An alternative view, empiricism, seeks to found

65See [18], chapter XII; [25], sections 6.4, 8.1; [17], section 42. The notion of (un)certainty in mathematics is a
broader theme of many of these works; cf. [4, pp. 212-6].

66Notice the object language/metalanguage distinction.
67Quoted in [25, p. 167].
68These terms are introduced in [17, p. 55].
69Shapiro provides examples throughout [25].
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mathematics in the experiences of the senses. [21, pp. 154-5] Predicativism “accepts the natural
numbers as given. . . either by our intuition or by a Platonic realm or by both,” and then seeks to
rebuild as much of mathematics as possible while avoiding impredicative definitions. [21, p. 159]70

These three views each begin mathematics proper with (at least) the natural numbers, and thus all
exhibit EC1.71 William van Orman Quine’s philosophical naturalism advocates for science as the
guide for what constitutes acceptable mathematics, displaying EC1 by assuming results of scientific
inquiry before mathematics can commence. [21, p. 160]

Shapiro’s treatment of some contemporary philosophies of mathematics tells a similar story. [25,
Part IV] The core difference between the philosophers and their associated schools (e.g. realism
vs. anti-realism) is the ontology of mathematical objects. But in each case, something is provided
to mathematics (frequently, the natural numbers) before it can begin. EC1 thus appears in each.
As two examples: in structuralism, the structures themselves which mathematicians study are the
givens. [25, pp. 258ff.] In Hartry Field’s fictionalism, specifically his realization of Newtonian
gravitational theory, “points” and “regions” are (among) the givens. [25, pp. 229ff.]

It is worth noting that Poythress’s Redeeming Mathematics proposes (with remarkable succinctness
and in lay terminology) an alternative philosophy of mathematics which could, in some sense, be
considered an exception among the philosophies of mathematics. He grounds the tools of mathe-
matics in the Christian God, who is ultimate in the Christian worldview. Poythress criticizes the
“reductionisms” of the aforementioned philosophies of mathematics72 and lays out a more holistic
approach which might require refinement of the ECs.73

3.7 (The Lack of) The Epistemic Characteristics in Theology and Philosophy

If mathematics has been able to employ EC1 and EC2 with great success (as have other academic
disciplines), can fields such as theology, philosophy, religion, or worldview studies emulate it? These
latter fields are of a fundamentally different character to the extent that duplicating the pattern
is not possible. Many, though not all, of their questions are inherently about ultimates (recall we
refer to these as “ultimate questions”). For the ultimate questions in these fields (or in whatever
field one places ultimate questions), there is no way to exhibit both EC1 and EC2.

Most significant for the present discussion is in regards to EC2.74 Limiting the scope of ultimate
questions is not possible, for to do so would be to render them non-ultimate. In this case, an object
language/metalanguage distinction is impossible; that is, the object language also includes the
metalanguage, and thus the two are equal (recall that the reverse inclusion holds for mathematics
and any other discipline in which the distinction is utilized).75 There is not, and indeed cannot

70For a thorough, favorable treatment of predicativism, see [27]. Information available at https://philpapers.
org/rec/STOADO-2. Accessed July 12, 2022.

71Their ontological claims about the nature of mathematical objects differ, but that is immaterial to our discussion.
72“Each of these [philosophies] has a preferred starting point. . . [which] becomes the preferred platform for explaining

everything else in mathematics.” [21, p. 151] Note the close connection of this observation with EC1.
73The comments in [21, pp. 104-5] are prime examples. In Poythress’ view, God, and hence ultimate knowledge,

is inextricably linked to mathematics. The pivotal feature is then the internal coherence of the system, not which
“starting point” is chosen.

74To briefly address EC1: while different philosophical or theological schools of thought disagree on the starting
points of EC1, each school presumably has some such foundational set. For example, see [13] for a comparison of
starting points for generalists and particularists, and [6] for a thorough treatment of the deep epistemological issues
faced in determining the elements which comprise EC1 (note the assumption that such elements exist).

75This is illustrated in simple terms in [29]: “when the logicists tell us what they mean by a logical proposition, . . .
they use philosophical and not mathematical language. They have to use philosophical language for that purpose
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be (for our human agent H), a greater context in which to discuss them. Since these questions
arise naturally in theology and philosophy, there is no way to “get outside” of those disciplines
when investigating such questions; one cannot attempt to answer ultimate questions in theology
without theologizing. There is nothing in the line of reasoning that falls outside of the umbrella of,
or transcends, the discipline. As Van Til put it, “[w]e must go round and round a thing to see of
its dimensions and to know more about it, in general, unless we are larger than that which we are
investigating,” [32, p. 24], [11, p. 257] and in the case of ultimate questions, we are by definition not
“larger” than they are. In this sense, theology and philosophy are intellectually all-encompassing.
Evidently it is this observation, in part, which motivates worldview scholar Nancy Pearcey to refer
to her Christian worldview as “Total Truth.” [19] EC2 cannot be exhibited for ultimate questions.

Ultimates thus have a “meta” relationship to other statements of knowledge. They don’t simply
lead to or propositionally support other statements; rather, they form the framework in which
an intellectual discipline is done. Intelligibility itself, a precondition of any intellectual pursuit,
is determined by the ultimates.76 Since it is fields such as philosophy and theology which handle
ultimate questions, the ECs cannot both be always exhibited therein.77 One particular conclusion,
in view of (FC), is that if circular support is acceptable anywhere, it would be so in fields such as
theology and philosophy by virtue of their inclusion of ultimate questions.78

3.8 Analogies

As an epilogue to the primary thrust of the article, we will make brief mention of a potpourri of
analogies, both within and without mathematics.

First, the epistemic distinction between ultimates and non-ultimates bears a resemblance to the
distinction in properties between the boundary and interior of certain mathematical objects, such
as a manifold. A planar disk (a circle with all of the interior points) is an example. The interior
has different properties (most notably, it is 2-dimensional) than the boundary (the 1-dimensional
edge of the disk). As ultimates are at the “boundary” of human knowledge, it is not surprising that
their epistemological properties differ qualitatively from the “interior,” non-ultimate knowledge.

Consider another mathematical analogy: a local/global distinction. A local property is satisfied
only at or within a neighborhood of a particular point/object (for example, any open neighborhood
of a point on a 2-sphere smaller than the 2-sphere itself, is isomorphic to the real plane), whereas a
global property in mathematics refers to the set of all points (objects) under consideration (the 2-
sphere, taken as an entire object, is not isomorphic to the real plane). The realm of epistemological
influence of a non-ultimate proposition can be thought of as local, whereas an ultimate has global
influence.

Many of the above concepts are not unique to mathematics, so it can be illuminating to see an
“everyday” example. One appears in dictionaries: a word cannot be defined without the use of

since mathematics simply cannot handle definitions of so wide a scope.” [29, p. 124] Similar comments for intuitionism
can be found in [29, pp. 127-8].

76In theology in particular, ultimates are often referred to as presuppositions. On this topic, Frame says, “The ‘pre’
[in presupposition] should be understood mainly as an indicator of eminence. . . not temporal priority.” [11, p. xxxii]

77Note that some of the questions which are asked in theology, philosophy, and related disciplines can be handled in
such a way that both EC1 and EC2 can be exhibited. The main point is that, unlike mathematics, not all questions
in theology or philosophy can exhibit both epistemic characteristics (cf. the discussion of EC1 in subsection 4.3).

78Recall that it is precisely the exhibition of the ECs which allows mathematics to categorically reject circular
reasoning; see Section 3.1, and compare the nuance in the meaning of “circularity” in Section 2.5.
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other words. Since there are only finitely many words, this means that, eventually, some word has
to be left either undefined (deemed so foundational as to be left out of the dictionary), or there is
a sequence of words which are used in each other’s definition (which is circularity; examples can
indeed be found in modern dictionaries). (FC) applies to definitions as well as propositions.

The object language/metalanguage distinction can also be seen outside of mathematics. Consider
a theatrical script: it employs stage directions (metalanguage) in addition to the lines of the show
(object language). Similarly, some government or legal documentation says, “This page intention-
ally left blank.” Those words themselves cause the page not to be blank, but they are considered
part of the document’s metalanguage rather than the document’s content (object language).

4 Follow-up Questions

4.1 Does this article itself use foundational or circular reasoning?

This article uses foundationalism in its propositional progression. We assumed several notions
at the outset, such as the use of logic and rationality in our truth-seeking. These were taken
as ultimate (without further defense) for this article. This particular assumption illustrates the
“meta” relationship that ultimates have with respect to other statements: had we not assumed
anything regarding logic and rationality, by what standards would we have proceeded to answer
any questions or make any claims? We could not reason about reason without using reason! The
rationality assumption established a precondition for the remainder of the article.

4.2 Could different individuals choose different ultimates, resulting in diverse
but self-consistent worldviews that are mutually exclusive?

In mathematics, this circumstance (a panoply of axiomatic theories) was essentially endorsed by
David Hilbert. “Literally, Hilbert claimed that if a collection of axioms is consistent, then they are
true and the things the axioms speak of exist.” [25, p. 156] Axioms in mathematics can be arbitrarily
chosen so long as they are consistent - a version of coherence epistemology in mathematics. In fact,
it is this line of reasoning which allows for the parallel79 existence of multiple geometries (Euclidean
and non-Euclidean) by asserting different axioms. Mathematicians are comfortable with this state
of affairs, so can we apply the same reasoning to worldviews, inclusive of ultimates?

A priori an affirmative answer to this question seems possible, and by our assumptions it seems to
be so in this article. However, let us momentarily suspend our moratorium on evaluating theories
of warrant. It is the author’s belief that, in practice, all truth-conscious individuals operate,
implicitly or explicitly, under some shared presuppositions80 which eliminate some worldviews from
rational contention; in particular, the possibility of global mutual exclusivity is removed. These
presuppositions include shared ultimate standards (e.g. for rationality and morality) by which
everything else is evaluated. The commonality between persons’ presuppositions assuages fears
that two individuals could have perfectly consistent and veracious worldview theories and yet have
nothing on which they agree; in reality, the two don’t actually inhabit disjoint systems.

For example, any theological or philosophical system that includes the principle of noncontradiction,
79No pun intended.
80Presuppositions in this context are ultimates, but as the former term is used more commonly when discussing

worldviews, we will adopt it for this follow-up question.
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as is assumed here, requires internal consistency. A necessary condition for all other ultimate criteria
would be that they not refute anything already in the system of ultimates. This condition alone
can indeed rule out many worldviews which might otherwise seem to be viable a priori. Details and
a more thorough treatment of how to choose the “right” presuppositions, or what it might mean
to be the right presuppositions, would be the topic of another work.

4.3 Does God need foundationalism, circularity, both, or neither?

One would first have to define what is meant by “God.” Specifically in Christianity and the other
Abrahamic faiths, the conception of God is traditionally as an ultimate God (in particular, He is or
determines the ultimate standard for rationality and morality). In other words, by definition, there
is no higher standard by which God can be judged. His word can be taken as foundational, and His
authority (and anything in His nature) as self-verifying; the notion of circularity in authoritative
support seems to be consistent with God’s nature in these faiths. This concept is part of what
theologians refer to as divine aseity,81 a concept hinted at in Hebrews 6:13;82 God has no standard
to appeal to above Himself! Thus, anything that is known to be part of God’s nature need not
(indeed cannot) be further justified.83 We must be careful, though, because it is quite possible that
the assumptions of the current article do not all necessarily apply to God’s “divine knowledge.” In
particular, the finiteness and time-bound nature of humanity are evidently not limitations for God.
Thus, we do not claim that the argumentation of the current article applies to divine knowledge,
nor is a claim made excluding the possibility of unimagined spiritual or supernatural realities about
which humans have never received revelation nor have other means of gaining knowledge.

One final comment on the relationship between Christian faith and human knowledge is in order.
The Bible, especially the wisdom literature (such as the book of Proverbs), affirms that human
knowledge, mathematics included, finds its final foundation in (reverence for) God. Job 28:28;
Psalm 111:10; Proverbs 1:7, 2:6, 3:5-6, 8:22, 9:10; and Colossians 2:2-3 are examples.84 At risk of
over-enthusiastic hermeneutics, verses like these seem to suggest that, in a Christian worldview,
EC1 will eventually be exhibited by all human knowledge, with the starting point being God’s own

81“Something ‘exists necessarily’ if it cannot fail to exist. Something ‘exists contingently’ if it can fail to exist.
Whether or not something contingent exists depends on factors outside itself. Therefore, ‘contingent existence’ (such
as ours) is ‘dependent existence.’ Necessary existence is aseity or self-existence.” [11, p. 116n36] For more on divine
aseity, see [11, pp. 265-78]. For more on the relationship between divine aseity and mathematics, see [21, pp. 63ff.]

82“For when God made a promise to Abraham, since he had no one greater by whom to swear, he swore by
himself. . . ” [15]

83The sticking point is knowing which characteristics are part of His nature. There is not agreement there, even
among devoted practitioners of a particular faith tradition. But the point is that if the qualities of His nature are
assumed to be known, then those qualities ground completely the authoritative justification. A common objection is
that grounding a standard like rationality or morality in God’s nature is “kicking the can down the road,” suggesting
that there is another step of reasoning beyond God’s nature which requires explanation. Such an objection violates
the conception of God as being Himself ultimate (by definition), or it seems to make the implicit assumption that
finite termination of the support sequence is impossible. Either is problematic.

84They read as follows. “And he said to man, ‘Behold, the fear of the Lord, that is wisdom, and to turn away
from evil is understanding’ ” (Job 28:28). “The fear of the Lord is the beginning of wisdom; all those who practice it
have a good understanding. His praise endures forever!” (Psalm 111:10). “The fear of the Lord is the beginning of
knowledge; fools despise wisdom and instruction” (Proverbs 1:7). “For the Lord gives wisdom; from his mouth come
knowledge and understanding” (Proverbs 2:6). “Trust in the Lord with all your heart, and do not lean on your own
understanding. In all your ways acknowledge him, and he will make straight your paths” (Proverbs 3:5-6). “[Wisdom
says] ‘The Lord possessed me at the beginning of his work, the first of his acts of old’ ” (Proverbs 8:22). “The fear of
the Lord is the beginning of wisdom, and the knowledge of the Holy One is insight” (Proverbs 9:10). “. . . that their
hearts may be encouraged, being knit together in love, to reach all the riches of full assurance of understanding and
the knowledge of God’s mystery, which is Christ, in whom are hidden all the treasures of wisdom and knowledge”
(Colossians 2:2-3). Scripture quotations are from [15].
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self-authenticating nature. In the author’s view, the philosophical skepticism of Agrippa and the
Pyrrhonists (and many philosophers of our day) is indeed correct that human knowledge would be
hopeless without a “beginning;” and moreover, that that beginning must be external to humanity
in order to be ultimately trustworthy. By virtue of the doctrines of historic Christian belief, the
nature of God is sufficient for such a beginning.

The author would like to thank the anonymous reviewers for comments which improved the article.
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Abstract

In 2018, my youngest child Erika passed away at age 21. As a Christian, as a father, and
as a mathematician, I struggled with many faith-related questions concerning her death while
mourning and grieving with the rest of my family and friends. Where was God when Erika took
her last breath? He could have stopped her from dying, but why didn’t He? Where was He
when she prayed? Did He not hear her (and our) cries and prayers? Although the sudden loss
was devastating and emotional pain has been excruciating, God has taught me many lessons
and even given me a sense of “peace that passes through all understanding.” In particular, some
mathematical concepts played a major role in healing the wounds. In this paper I will share
some of these lessons and thoughts that have helped me stay close to Him.

1 Introduction

It was Saturday, January 13, 2018, when I got that unexpected call. The caller ID said, “Los
Angeles County Coroner’s Office.” I was told that my daughter was dead.

Erika was the youngest of my three healthy, happy children. An active member of the campus
ministry Cru, she was a college senior, majoring in culinary arts and hospitality management at
Cal Poly Pomona, and she had just finished her internship at a Michelin 3-star restaurant in San
Francisco, working for the famous French chef Dominique Crenn. But in the fall of 2017, her
best friend, a UCLA senior majoring in pure mathematics, committed suicide following years of
depression and eating disorder. Then, just a few months later, Erika also took her own life.

The loss of a family member is always difficult, but losing a child is perhaps most painful. Where
is God when we suffer? What was God doing when Erika prayed, earnestly, for her best friend,
and for herself? If God is able, why did He not stop her and preserve her life? What was God
thinking—is it a good idea to take away a 21-year-old precious child ready to begin her career?
My family and I struggled to find answers while experiencing unspeakable grief and sadness. My
surviving son and daughter, my wife, and I each mourn and grieve in our own, unique ways.

Perhaps many are familiar with five, seven, or even twelve stages of grief.1 But the reality is
that those stages do not just end or terminate. The process of mourning is, in our mathematical
language, more like an infinite sequence (or an infinite series if accumulated grief is considered).
But it does not have to be a divergent one. While our mourning may continue, God can still give
us a “peace that passes through all understanding.”

1For example, Elisabeth Kubler-Ross’s “five stages of grief” in her well-known book On Death and Dying, published
in 1969.
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And He has.

In this paper, I will share some comforting and glorious ideas, thoughts, and lessons I have learned
through this truly excruciating trial. In particular, some mathematical concepts and models have
given me great insight to further appreciate the goodness and the greatness of God, the same God
whom Erika loved and worshipped on earth, with whom she now lives in eternity.

2 Lessons from Mathematics

2.1 The Incompleteness Theorems

In 1931, Kurt Gödel proved his celebrated Incompleteness Theorems, which have had far-reaching
implications not only in mathematics and logic but also in philosophy. Roughly speaking, the first
result states that there are statements in arithmetic that are true but can never be proved. In other
words, some truths must be taken “by faith” and not “by sight.” Furthermore, his second result
states that no axiomatic system can prove its own consistency. Said differently, no axiomatic system
can, within itself, guarantee that the system contains no contradiction; consistency, therefore, must
be taken “by faith” as well. The French mathematician Rene Thom is quoted as saying that we
mathematicians “have only an incomplete and fragmentary vision of this world of Ideas” [4, p. 299].
The English mathematician and cosmologist John D. Barrow famously said that “Gödel has taught
us that not only is mathematics a religion but it is the only religion able to prove itself to be one”
[2, p. 142].

The Incompleteness Theorems painfully remind us of our limitations—not only of our knowledge
itself but also of the “knowability ” of truths. We are clearly aware of this fact experientially. When
we ask why certain things happen in life, when we want to know what God’s plans are, we may
or may not find the answer. Many events simply do not make sense. Then we wonder if God is
really watching—or worse, if God even exists. But of course our Sovereign and Omniscient Creator
is orchestrating everything in this universe, all the time, as a master conductor. We are told that
no sparrows fall to the ground without His knowledge (Matthew 10:29) and that He even decides
what appears to us as random outcomes of casting lots (Proverbs 16:33). The author of Hebrews
reminds us how important it is to believe this fact as all of us are to “believe that He exists, and
that He proves to be One who rewards those who seek Him” (Hebrews 11:6, NASB).2

As mathematicians we are trained to prove propositions or give counterexamples. You may be
inclined, especially during tough times, to ask, “God, why is this happening? Prove to me that this
tragic event is a good thing in your overall plan. Explain how ‘all things work together for good’
as Romans 8:28 says.” But often, God remains silent.

Sure, for certain events, there may be a simple explanation or proof. For some other events,
however, while an explanation or a proof may exist, it could be beyond our comprehension. Here
is an example. As a 7th grader, I learned the formula for the volume of a circular cylinder, 1

3πr2h.
For many years I wondered where the 1

3 comes from. Then, in my calculus class, years later, I saw
the following question: “Find the volume of the solid obtained by rotating the function f(x) = r

hx
on [0, h] about the x-axis.” Clearly, the solid of revolution in question here is the circular cone
whose radius and height are r and h, respectively.

2Unless otherwise stated, all Scripture quotations in this paper are from the New American Standard Bible (NASB,
2020).
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The answer, using the disc method, looks like this:

V =
∫ h

0
π
( r

h
x
)2

dx = π
r2

h2
1
3 (h3 − 0) = 1

3πr2h.

Now, calculus students could easily see that the “1/3” came from integrating the square function;
however, it is very unlikely that a 7th grader can understand this fact. In the same way, some
of God’s truths may look mysterious and incomprehensible to us humans, with our very limited
knowledge and understanding. But it does not mean they are false. Perhaps some day we will
understand why certain things happened in our brief life on earth just as clearly as we understand
why there is a “1/3” in this volume formula. We must then stay patient and admit that there are
things we do not understand. “For now we see in a mirror dimly, but then face to face; now I know
in part, but then I will know fully, just as I also have been fully known” (I Corinthians 13:12).

Furthermore, yet for some other events, it is quite possible that no proof may exist, comprehensive
to us or otherwise. The Incompleteness Theorems suggest that possibility. After all, God is not
obligated to give us explanations. In fact, He does not even require that we understand; rather, He
requires that we trust. Kurt Gödel probably never imagined this far-reaching, Christian implication
of his results—the fact that some truths require faith and not proof.

2.2 Dimensions

In 1884, the English writer Edwin Abbott Abbot published Flatland: A Romance of Many Di-
mensions, a satire on the British society. In this well-known story, all the residents are 1- and
2-dimensional figures (line segments and polygons) in their planar universe, the “Flatland.” Then,
one day, the “Sphere” comes down into their 2-dimensional world and passes through the plane,
an event totally incomprehensible to the inhabitants of Flatland. This story has been made into a
feature film, along with its sequels including Flatland 2: Sphereland.

When the authors of the Bible describe heaven, or eternity in general, it is possible that the
heavenly realities are so incomprehensible to us the inhabitants of a 3-dimensional universe that
no sufficiently accurate description can be written in human language. Ezekiel marveled at God’s
revelation frequently, and Daniel even confesses that he “could not understand” what he had seen
(Daniel 12:8). Perhaps our understanding of heaven is similar to what the residents of Flatland
experienced when they saw the Sphere coming down to their land as a point first, then as a circle
growing and shrinking, until it became a point again before disappearing. Of course, as believers
we hold that the Bible teaches us exactly what we need to know, albeit with our severely limited
understanding.

This “human disability to understand God’s reality” is not limited to heaven and eternity. Perhaps
other mysteries like election versus freewill, the Trinity, the infinity of God, and creation ex nihilo
would all make sense with additional “dimensions” of rationality. In particular, God’s omnipresence
and proximity to each of us could be thought of as humans living on the plane while He occupies
another entire plane—a separate one—infinitesimally close to ours. Here is a more specific way to
look at this: imagine we live on the xy-plane {(x, y, z)|z = 0} while His world (or at least a part
thereof) is like the horizontal plane {(x, y, z)|z = ϵ} for some ϵ > 0. We would not be able to see
Him physically from any point of our human universe (the first plane), but He is there, always very
close to each of us (the second plane).
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This idea could also illustrate how Satan can travel between God’s presence and the human universe,
where Job lived, almost instantaneously (Job 1, 2). If that heavenly realm is simply ϵ away but
outside of our dimensions, we would never see or know where it is while it is always ever so close
to us.

I also wonder if the “realm of the dead” could be similarly illustrated. We often describe the
spirit of the dead as “going up” to heaven or someone “ascending the stairway to heaven,” but up
where? Note that what one refers to as the “up” direction on earth depends on where the person
is located on the sphere, and it could point to any direction in the 3-dimensional universe. After
the resurrection, Jesus seemed to come in and out of the realm of the living, where we are, as He
appeared and disappeared on many occasions. Locked doors were not a problem, either. These can
be easily explained by a model like the ϵ-plane described above, so long as there is a way to move
from z = 0 to z = ϵ. Sometimes I even wonder if this can illustrate the appearance of Erika (and
other loved ones who have deceased) in my dreams. Erika often appears in a crystal-clear way in
my dreams, where I can see every detail.

Now, I am fully aware that these thoughts (or just my imagination) cannot be “proved,” but
illustrative models do not require proof. Higher dimensions simply point to the possibility that the
beings in the “spiritual realm” can be very “close” (depending on the definition of the metric used,
of course) to us in the “physical realm.” It is, therefore, possible that Jesus, the angels, and other
heavenly hosts, and our deceased loved ones are all ever so close to us while we may not be fully
or visually aware of their proximity.

2.3 Non-Euclidean Geometry

What is heaven like? This question often came to my mind when remembering Erika. While we
do have some information based on the Bible (especially in the book of Revelation), perhaps for us
to try to understand the heavenly realm is like for a Flatlander to try to understand 3-dimensional
beings. Remember, simple words like “up” and “down” make absolutely no sense to a Flatlander.

Here is another example of a world so different from ours that it is hard to comprehend: non-
Euclidean geometry, a hyperbolic space in particular. As many mathematicians struggled in the
18th century to prove or disprove Euclid’s Parallel Axiom, Saccheri got so frustrated with the
possible outcomes when Euclid’s Fifth Axiom is negated that he just called them “repugnant to
the nature of the straight line” (to his credit, without claiming them to be contradictions). The
very idea that a rectangle (a quadrilateral with four right angles) cannot even exist in this strange
universe was just ridiculous to him and others.

One should remember that non-Euclidean geometry is just as consistent as Euclidean geometry.
In other words, one could theoretically live in a non-Euclidean world and experience no logical
contradictions. As a matter of fact, we do, in a sense, because we live on a giant sphere. Immanuel
Kant could not possibly imagine a non-Euclidean universe and dismissed the whole idea, but it is
truly ironic that he denied its possibility while living on a positively curved space called the earth.
After all, if one considers great circles (geodesics) as ”lines” on this sphere, no triangle has the
property that its angle sum is 180 degrees, and many other Euclidean theorems would not hold.

In hyperbolic geometry, where the curvature is negative, it is well-known that the angle sum of any
triangle is less than 180 degrees, the area of a triangle is actually determined by the angle sum,
and no triangles are similar unless they are congruent. Additionally, there are no rectangles while
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there are regular pentagons, hexagons, etc., where each angle is a right angle.

When we try to comprehend heaven, maybe it is like those of us living in a Euclidean world trying to
comprehend a hyperbolic world, where a “curve” may look “straight” (and vice-versa) and where the
residents may dismiss crazy ideas such as rectangles and similar triangles as “absurd,” “repugnant,”
and “illogical.” I have a feeling that real heaven is much more glorious than we can ever think,
beyond all imagination. On this side of eternity, we are severely limited by our own faculties and
senses, biased with our own earthly experience, unable to have heavenly visions accurately.

After reading Erika’s journals, filled with spiritual insights, earnest prayers, and honest observa-
tions, there is no doubt that she is in heaven, in the presence of the Lord. An everlasting world? I
cannot comprehend it, but I look forward to experiencing it myself.

2.4 The Number Line

The concept of “continuum” can give another illustration of how a “transcendent” God can live or
remain among us, close to us, and in us. The set of real numbers, as represented by the number
line, is such an intuitive idea yet an extremely difficult one to define. In high school mathematics
we often avoid the technicality of a precise definition and give an explanation like this:

Rational numbers are fractions of integers. But there are a lot of real numbers that are
not rational, like π and e. Those are called irrational numbers. Rational and irrational
numbers together make up the set of real numbers, or the number line.

Many of us are guilty of using circular reasoning when we “define” irrational numbers as those real
numbers that are not rational and real numbers as rational or irrational numbers. Of course, one
can use Dedekind’s cuts or equivalence classes of Cauchy sequences (both are ways to define real
numbers), but as the history of mathematics suggests, it took many centuries for humans to figure
out exactly how to define real numbers.

The important point here (no pun intended) is that the structure known today as R, the set of real
numbers, is extremely complex (again, no pun intended). If one begins, as in set theory, with the
empty set ∅ as the definition of 0, followed by {0} as the definition of 1, and so on, it is simple to
construct the set of natural numbers; it is also easy to extend this notion to define integers and
then the set of rational numbers Q. At this point, because Q is dense on the number line, one
would think the task of filling the line is almost complete. In fact, that is what Pythagoras may
have believed, at least until

√
2 was proved to be irrational. Remember, though, that this was some

two and a half millennia before Dedekind and Cauchy!

Now, to the dense set Q, we can even add
√

2 and all other irrational numbers obtained as solutions
of polynomials with integer coefficients. These are known as algebraic numbers. There are a lot
of them (infinitely many, of course). We have just made the set Q “denser” (maybe). But then
one hits a brick wall. There is no algebraic way to get numbers like π, e, or any rational multiple
or sum of these numbers, which are clearly real, but not algebraic. We know these numbers as
transcendental numbers, and it turns out that there are more of these than algebraic numbers.3

3Measure theory suggests that a countable set, like Q, is so much smaller than the continuum (like R) that the
probability that one picks a rational number when randomly throwing a dart at the number line is 0. This shocks
most undergraduate mathematics students.
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Now, with these two “levels” of irrational numbers included, the set R is finally complete.

What is the lesson from this historical development of numbers? Just for the sake of this metaphor,
enter the imaginary (again, no pun intended) world of the real line, where we humans are rational
numbers, infinitely many and dense, i.e., within any “neighborhood,” there are as many of them as
you want to find. We may appear “complete” and filling the entire line. We may be led to think
that we are the whole world. But the fact is that there are a bunch of holes. In fact, there are
“more” holes than points filled because there are uncountably many irrational numbers, none of
which is even “knowable” from the world of rational numbers. They are beyond reach, thus the
term “transcendental.”

Theologians speak of the “transcendence of God” as well as the “immanence of God.” The former
has to do with God being outside of human understanding and experience whereas the latter
indicates His proximity and intimacy with us. The real line then can be thought of as a simple yet
stunningly elegant illustration of these two seemingly contradictory ideas.

This transcendence and immanence of God could explain, in part, how Jesus appeared and disap-
peared, sometimes recognizable and sometimes not, after His resurrection. The two disciples on
their way to Emmaus were met by Jesus and walked side by side with Him, not recognizing who
He is (Luke 24). But then when He broke bread, they “saw” Him among us, much like finding
irrational numbers between two rational ones. But then He simply disappeared, as if to return to
the realm of the transcendental. He is, however, forever with us, just as He promised, “Behold, I
am with you always, to the end of the age” (Matthew 28: 20). He is, after all, our “Emmanuel.”

During difficult times, many believers ask,“Where is God?” as I did when my daughter passed
away. But He is here, with us and in us, “dense” in His presence, far more “present” than we could
imagine, although at times He seems so “transcendent” and unreachable from our standpoint. It
is by faith we know that “what is seen has not been made out of things that are visible” (Hebrews
11:3).

3 Lessons from the Bible

Needless to say, the Bible has a lot to say about suffering, tribulation, trials, pain, death, and faith.
Hundreds of verses can be mentioned, explained, and quoted here. However, I will focus on just
a few passages that I, from a mathematical perspective, have found especially helpful during my
healing period.

3.1 Philippians 4:7

This verse states, “And the peace of God, which surpasses all comprehension, will guard your
hearts and minds in Christ Jesus.” In the New International Version, this peace “transcends”
all understanding. Just as those “transcendental” numbers cannot be obtained algebraically from
integers, the way to attain this divine peace “transcends” any human logic. Even in prison, Paul
thanks the Philippian believers for their gifts, affirms his contentment, tells them to “rejoice (and
again rejoice),” and urges them not to be “anxious” but to “let their requests be made known to
God.” Then, he adds, the peace of God would guard/keep their hearts and minds in Christ Jesus.
What kind of peace is it? It is the type of peace that “surpasses (transcends) all understanding.”
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Mathematicians may not like such an expression because we highly value (and some may even
worship) understanding. What could possibly surpass all of our understanding?

Again, one may recall that underlying message of the Incompleteness Theorems. Some true propo-
sitions are beyond proof; some truths are beyond any of our understanding. The type of peace God
promises here, once we stop being anxious, goes far beyond anyone’s understanding. 4

3.2 The Book of Job

The book of Job is probably the most relevant book of the Bible when considering human suffering
and God’s sovereignty. Job, described as “blameless, upright, fearing God, and turning away from
evil” (Job 1:1), was blessed with ten children and had become extremely wealthy. Then, suddenly,
he lost all ten children, his possessions, and his health.

Job seems to have known quite well that God gives us both blessings and sufferings: “The LORD
gave and the LORD has taken away. Blessed be the name of the LORD” (Job 1:21). 5 Yet, Job
3:11 indidates that he wished to have never been born. He writes, “Why did I not die at birth,
come out of the womb and pass away?” In fact, Job eventually shares his frustration and sorrow,
with his heart wide-open, in talking to God, stating “I cry out to You for help, but You do not
answer me; I stand up, and You turn Your attention against me. You have become cruel to me;
with the might of Your hand You persecute me” (30:20, 21).

The last few chapters, however, give us a rich and timeless lesson. When God broke His silence
and finally spoke, Job realized that he did not need the answers he thought he wanted. Job asked
“Why?” (as so many of us do), but God never directly answered that question. Instead, God began
with His own question in Job 38:4, “Where were you when I laid the foundation of the earth?” This is
followed by a series of powerful questions underscoring His sovereignty, eternality, immeasurability,
and omnipotence. Job then answers, “I am insignificant” (40:4). Someone paraphrased this as “I
am not in the same league with God.” But God was not done yet, asking Job to “tighten the belt. . .
like a man” (40:7). After many more divine questions, Job clearly understood his role. He said,
“Therefore I retract, and I repent, sitting on dust and ashes” (42:6). His role was not to ask God
why, but simply to trust. 6

I once imagined that, were Job a mathematician living today, God may have showered him with
such questions as these:

• Were you there when I established the foundation of the world of mathematics, merely with
the empty set?

4Sometimes people wonder how I can be laughing, joking around, or enjoying vacations after losing my child.
True, some people never recover from such a devastating loss. My only answer is this “peace of God.” Yes, I do have
that “incomprehensible tranquility.” No, I cannot explain or understand it. But I thank the Lord for allowing me to
have it.

5Erika left many journals behind as well as a Bible filled with notes. After her death, we discovered what she had
noted, in tiny writing, right next to Job 1:21. Her note reads, “Dang, that’s faith.” This verse is now engraved on
her tombstone.

6On a personal note, a few months after Erika’s death, I was in Niagara Falls, N.Y., to attend a professional
conference. There, strolling right along the world-famous waterfalls, I listened to the last few chapters of Job on my
Bible app. Question after question, God makes it clear to Job that God is not man and Job is not God. The powerful
thundering sounds of the waterfalls helped me realize the magnificence of a God who created all things. Yes, “I am
insignificant” in contrast to the Almighty.
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• Who decided that trigonometric and hyperbolic functions are intricately related and there is
a hidden transcendental number that can define all of these functions?

• Did you know that from the empty set you can create the infinite set of natural numbers,
and then integers, rational numbers, and all reals, complex numbers, and all of Rn? Can you
create everything out of nothing, as I can?

• Why did algebraists call some groups simple when they are notoriously complicated?

• Why did it take mankind so long—centuries—to figure out the limits of logic and the Incom-
pleteness Theorems?

• Did you know, as I did, that Cantor was doomed when he tried to “solve” the Continuum
Hypothesis?

The critical lesson here is this: God does not necessarily want us to understand; He wants us to
trust Him. This is similar to an implication of the Incompleteness Theorems: some truths cannot
be proved. We must admit our limitations—we are finite, bounded, and incurably depraved beings.

We may think “not knowing why” is the problem. It turns out that “knowing God” solves that
problem.

3.3 Book of Ecclesiastes

Like the book of Job, Ecclesiastes is part of the “Wisdom Literature” section of the Old Testament.
This remarkable book is arguably the most revealing, poignant, and vivid description of life, its
transitory nature, its meaningfulness, and God’s sovereignty.

It is no surprise that this word “vanity” (habel in Hebrew) is one of the key words of the book,
and one can easily find dozens of explanations or definitions. David Gibson summarizes various
aspects of this word with terms such as “short, temporary, vanishes quickly, fleeting, and elusive”[3,
pp. 20—21]. William Barrick accurately points out that, while this term can mean (particularly
when associated with idols) worthless, useless, or mere breath, none of the texts in Ecclesiastes
claims that life is “totally empty and meaningless”[1, p. 2].

How long is this life under the sun, compared to eternity placed in our hearts? In the language of
mathematics, if one is to live x years under the sun, for each non-negative real number x ≥ 0,

lim
n→∞

x

n
= 0.

However, this is not to say that life is meaningless, doomed, or empty. God gives us happiness and
sadness. There is a time to laugh and a time to mourn. Job was clearly aware of this fact when he
faced his challenges. Life is short and often hard. But the whole message of Ecclesiastes, written
by the wisest man in history, is to enjoy God in healthy fear of God. The chief end of man is,
indeed, to glorify God and to enjoy Him forever.

Another aspect of the word “vanity” involves that which cannot be understood: puzzling, incom-
prehensible, unfathomable events that do not make sense. In fact, Kaiser even writes, “puzzle of
puzzles, all is puzzling”[5, p. 26]. Other synonyms include unreasonable, repugnant (as famously
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used by Saccheri in regard to non-Euclidean geometry), ludicrous, bizarre, crazy, irrational, repul-
sive, hideous, outrageous, unfair, preposterous, and idiotic. Perhaps a simpler description would
do: “This world is messed up!”

This frustrating sentiment is echoed by the repeated phrase “striving after wind” (or “vexation of the
spirit”). This sense of the word “vanity” then reminds those of us in mathematics of “unknowable”
propositions implied by the Incompleteness Theorems. It was indeed quite frustrating for people like
Wolfgang Bolyai, who had spent years of his life trying to prove the Parallel Postulate, something
we know today as an impossible task.

I have traversed this bottomless night, which extinguished all light and joy of my life. . .
Leave the science of parallels alone. . . . I thought I would sacrifice myself for the sake of
the truth. I was ready to become a martyr who would remove the flaw from geometry
and return it purified to mankind. . . I turned back when I saw that no man can reach
the bottom of the night. I turned back unconsoled, pitying myself and all mankind. . . .
I have traveled past all reefs of this infernal Dead Sea and have always come back
with broken mast and torn sail. . . I thoughtlessly risked my life and happiness (H.
Meschkowski, Noneuclidean Geometry, 1964, quoted in [4, pp. 161–162]

It was also frustrating for Georg Cantor to try proving the Continuum Hypothesis. After all, he
was not aware that the answer is ultimately neither true nor false but rather independent of the
other axioms. So why are we no longer frustrated today? It is precisely because we now know that
neither the Parallel Postulate nor the Continuum Hypothesis can be proved or disproved from the
other generally accepted axioms.

Solomon asserts that life under the sun is “puzzle of puzzles,” filled with incomprehensible things
and events. Job also expressed his frustration, along with physical pain, because he could not
comprehend many things and events—until God showed up, that is. Job then learned, as mentioned
above, that he needed not understand everything. He did not know the Incompleteness Theorems,
but he certainly understood that certain truths are beyond our reason and logic. Job was okay
with that; we should be as well.

4 Conclusion

Contrary to what may be assumed by some, factors like poverty, lack of education, and being from
a broken family are neither necessary nor sufficient conditions for suicidal thoughts. 7 Mental
health issues are not limited to certain groups of people; they do not discriminate. They affect
men and women of all ages, every culture and language, regardless of race, ethnicity, talent, wealth,
intelligence, occupation, and level of education; and these include mathematicians past and present.

In the mathematical world, suicide victims include Alan Turing, Felix Hausdorff, and Paul Epstein.

Many other mathematicians, while not victims of suicide, suffered tremendously from depression
and mental disorder. Georg Cantor is perhaps the most famous example. This revolutionary, the

7A few days after Erika’s death, one of our other children found a journal entry where Erika had written about a
conversation she had with me that day. Erika added that she wanted to talk to me because (in her words), “Talking
to Dad is the closest thing (on earth) to talking to God.” It was with great comfort that I read those precious words.
In the end, neither my words nor my presence could help her survive her pain and depression, but at least I was
there, trying my best to help her.
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father of a theory that forever changed the landscape of all mathematics, had already achieved
fame and prestige at the University of Halle before his first episode of mental disorder in his late
30s. Then he too lost his youngest child Rudolph unexpectedly. Cantor never recovered fully from
this tragic loss, and all the controversies on his theory of transfinite numbers did not help, either.
After suffering from chronic depression and repeating hospitalizations, Cantor died in 1918 in a
sanatorium.

As for the man who proved one of the most monumental results, the Incompleteness Theorems,
yes, Kurt Gödel too suffered mental illness, refusing to eat, and ultimately died of starvation in
1978.

Do we live in a broken world? Yes. Absolutely.

Yet, at the same time, we have unwavering hope in a world to come. Is it based on understanding?
Not necessary. Is it based on faith?

Yes. Absolutely.

For the last twenty or so years, I have been thinking a lot about integration of faith and mathematics
[6]. Then God took away my child. But then He taught me truly invaluable, transforming, and
eternal lessons, through mathematics as well as His Word, giving me a “peace that passes through
all understanding.”

This is integration.
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Abstract

Human finitude—the set of limitations we have as created beings—is a surprisingly positive
aspect of our existence. It is easy to interpret our limits in a negative light, but viewing them
instead as a gift from God can reveal blessings that might otherwise be taken for granted. In this
paper, we examine the field of information security, discovering that many of its fundamental
principles and techniques are designed to account for our created finitude and exploit it toward
productive ends. Through this lens, we can appreciate more fully the God-given gift of creaturely
finitude.

1 Introduction

Finitude is so fundamental to the human experience that, aside from the occasional philosopher,
theologian, and perhaps mathematician, most of us simply take it for granted. Each person has a
finite amount of knowledge: as anyone who has embarked on a quest for learning has discovered,
the number of things one does not know seems to increase the more one learns. There are also
limits to what we can do. Outside of science fiction and fantasy, no one questions the restrictions
of existing in one and only one place and moving continuously through three spatial dimensions.
Each of us has command of a finite amount of resources: the most powerful people in the world
still have bounds to their possessions and influence. We have come to accept as inevitable that
our existence in this world has a beginning and an end, and we are bound to traverse that span
in a single direction, as the quip goes, “at a constant rate of one second per second.” Despite
the limiting nature of these facts, Christian thought embraces the idea that our finitude is not an
inevitable handicap but an intentional and good gift from our Creator.

Another (at least seemingly) inevitable aspect of modern life is the pervasiveness of technology.
As society’s adoption of technology affects more and more areas of our lives, the importance of
protecting our digital security continues to rise. Driven by endless opportunities for profit and
power, malicious actors lurk around every corner in cyberspace. The purpose of information security
is to develop principles and techniques to combat these adversaries, protecting our information and
technological assets from misuse. In this paper, we note an intriguing philosophical theme that
runs through this highly technical field: recognition of, and even reliance on, human limitation. In
fact, the God-given gift of human finitude can be found underlying both principles and techniques
throughout information security.
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2 Technology and Finitude

The formal theory underlying computer science has some of its earliest foundations in a recognition
of our mathematical and computational limitations. Alonso Church and Alan Turing independently
formalized the concept of an “algorithm” in 1936. Following the lead of Kurt Gödel’s then-recent
work in mathematics, each proved (via his own definition) that there are inherent, unavoidable
limits in what an algorithm can accomplish. The field of complexity theory emerged from attempts
to delineate clearly what can and cannot be computed and, even more importantly, what can and
cannot be computed efficiently. This is the essence of the famous open problem of the relationship
between complexity classes P and NP, which has been called “the most fundamental and important
mathematical question of our time” [14]. Even the futuristic-seeming field of quantum computing
is already understood well enough to define quantum complexity classes and begin placing them in
relation to those of classical (non-quantum) computing.

Of particular interest to us is the distinction between problems that are not computable at all
and those that are “intractable,” i.e., not computable efficiently. It is specifically because of our
finitude that, despite being fundamentally different in theory, these two classes of problems can be
considered equivalent in practice. As we will see in Section 6.2, this is especially important to the
assumptions that underlie public-key cryptography, arguably one of the most impactful inventions
in information security.

Any system, network, or technique of information security is only shown to be secure against
a specific, well-defined attacker. An indispensable portion of any research paper in information
security or privacy is the “attacker model.” The attacker model provides a clear definition of the
assumed capabilities and, importantly, assumed limitations of the entity who is trying to defeat the
system. Every security technique, from authentication protocols to key exchanges to cryptographic
constructs, is predicated on a set of assumptions about the finitude of the adversary. If any one of
these assumptions fails or can be invalidated by a clever attacker, the security properties that the
system aims to defend can be violated. For example, some algorithms for distributed consensus
(Section 5.3) rely on the assumption that an attacker controls fewer than 50% of the participating
systems. If any participant can generate a large number of independent-looking votes, then the
result may not represent the actual consensus of legitimate participants.

The field of information security involves guiding principles as well as concrete techniques, and
examples of the importance of finitude can be found in both categories. For a representative
sample of the former, we will refer to the oft-cited set of information protection principles proposed
by Jerome Saltzer and Michael Schroeder in 1975. Though nearly fifty years old, these keen
observations continue to inform the design of security-conscious systems to this day. We will also
observe assumptions of finitude found in techniques for confidentiality, integrity, and authentication.

3 Theology and Finitude

As Christians, the idea that finitude is not merely a limitation but a property that can be harnessed
and put to good use should not come as a surprise to us. The creation narrative in Genesis
makes it clear that humankind was already limited when God declared his work “very good”
(the Hebrew tov here carrying the meaning of “functioning as intended”). Even the finite nature
of the rest of creation is a boon to scientific thought, since our human understanding would be
insufficient to explore a universe of infinite complexity [5]. Our creatureliness was given to us
intentionally by our Creator. It can be tempting to scorn or reject it, but we are instead called to
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recognize and affirm that our knowledge, physicality, and time are limited. In this section we draw
from several neo-orthodox and existential theologians as well as from Genesis and Ecclesiastes to
establish a theological context for finitude as a gift. In subsequent sections, we examine principles
and techniques of information security that are made possible because of this gift.

3.1 Finitude Intentionally Created

Christian theology has, over the years, come to recognize finiteness as a good and intentional
aspect of humanity’s created form. While a consistent examination of finitude in a positive light
is a relatively recent theological development, the idea is not altogether new to Christian thought.
Emmanuel Falque notes positive appraisal of our limits in theology as early as Thomas Aquinas,
who writes that our creaturely bodies are not hindrances for unlimited intellects but fitting homes
for limited ones [13]. Theological movements of the nineteenth and twentieth centuries, notably
neo-orthodoxy and Christian existentialism, began to give more thought to the significance of our
limits, often in connection with the doctrine of creation. Reinhold Niebuhr, for one example,
observes that the Bible views our finiteness, dependence, and insufficiency as “facts which belong
to God’s plan of creation and must be accepted with reverence and humility” [26].

Although there are many things that our limitations prevent us from accomplishing, it is worth
noting that God created humankind finite from the very beginning and saw fit to declare it “very
good.” Adam and Eve were intellectually limited. They lacked the knowledge of good and evil
(Gen. 3:22) and were subject to deception by the serpent (Gen. 3:1). They were physically bounded,
distinct from one another and placed in a particular garden, which was itself delineated by four
rivers (Gen. 2:10–15). Adam was not all-sufficient in resources or ability, needing a partner to
work alongside him—something that was just as true in Genesis 2:18 as it is in Ecclesiastes 4:9–
11. Finally, both were bound by time, coming into existence at a defined point in the creation
narrative (Gen. 2:7,22) and experiencing the flow of time along with the rest of the created world,
as illustrated in the sequential days of creation and heard in the refrain of evening and morning
throughout Genesis 1. God even placed a moral restriction regarding the tree at the center of the
garden. Dietrich Bonhoeffer points out that even this was a gift to Adam and Eve: the gift of true
freedom to choose obedience to their Creator [6].

Our finitude, therefore, was imparted by the giver of every good and perfect gift. Rather than
focus on the restrictions it imposes, we should seek out and appreciate the new possibilities that
it creates. Karl Barth takes this approach in his Church Dogmatics, in which he devotes an entire
section to “Freedom in Limitation”. Throughout the section, he highlights important consequences
of our limitations, ideas that we might have taken for granted were they not pointed out. His
unifying thesis is that our limits give us specificity. “Limitation as decreed by God,” Barth observes,
“means circumscription, definition, and therefore determination” [3]. Each of us has a defined place
precisely because we are not omnipresent, an allotted time precisely because we are not eternal,
and a unique identity precisely because we are not omniscient.

Moreover, our place, time, and identity are not accidental, nor are they self-determined; rather, our
Creator chooses them for us. It is an exact place we have been given in all of creation and in all
of history. The very act of drawing a boundary is also the act of defining a shape, and in drawing
out our limits, God defines for each person’s life a specific calling [3]. Colin Gunton, in his study
The One, the Three, and the Many, criticizes the modern era for losing sight of the “particularity”
defined by the created boundaries distinguishing one creature or creation from another. He suggests
that haecceitas—the “this-ness” of any created thing—is derived from “the way it is held in being
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not only by God but also by other things in the particular configurations in space and time in
which its being is constituted” [16]. That is to say, we have meaning because we are placed, and
we are placed because we are finite.

Scripture reminds us that “we are God’s handiwork, created in Christ Jesus to do good works,
which God prepared in advance for us to do” (Eph. 2:10). If God has prepared our work in advance
of creating us, then He knows exactly where to locate us and how to gift us to make possible that
very work. To use Barth’s distinction, our limitations are not given so that we can do only certain
things, but so that we can do precisely that which has been prepared for us [3].

3.2 Rejecting our Finitude

If each person’s calling is presented to them by God through created limitations, then we should
celebrate rather than scorn them. Contemporary theologian Daniel Treier writes at length about
the “gift of finitude” as celebrated in the book of Ecclesiastes [35]. A clear theme throughout
Ecclesiastes is the folly of attempting to build for ourselves a life or legacy that does not succumb
to the eventualities of “time and chance” (9:11). Niebuhr makes a stronger indictment, writing
that “sin has its source, not in temporality, but in man’s wilful refusal to acknowledge the finite
and determinate character of his existence” [26]. Although there can be nothing evil in a gift from
God, the occasion for sin arises when we choose to refuse this gift, so we must resist the temptation
to reject or disregard our limitations. Jacques Ellul summarizes the wisdom message of the book
of Ecclesiastes thus: “[w]isdom involves first of all recognizing our finiteness” [12].

We may even identify the sin of rejecting our finitude as a form of idolatry. Paul Tillich defines
“idolatrous faith” as mischaracterizing that which is finite [33], and Ellul, citing Aarre Lauha,
suggests that Ecclesiastes may lend indirect support to this idea. Each of the Teacher’s attempts
at finding lasting meaning in temporal things—pleasure (2:11), work (2:21), wealth (2:26), status
(4:16)—is given the same label: vanity (hebel). Lauha, in examining this refrain, notes that the
same Hebrew root is used in the plural as an important synonym for “idols” in Old Testament
books of history and prophecy [20]. Ellul posits that the book’s famous incipit might then have
carried the connotation “vanity of idols!” in its original cultural-linguistic context [12].

3.3 Embracing our Finitude

Finitude and our response to it are central themes in the theology of Paul Tillich, featured in his
treatise The Courage to Be and found throughout his Systematic Theology. One anthologist even
christens him “theologian of the boundaries” [31]. According to Tillich, the hallmark of finitude is
the presence of a boundary between a state of “being” and a state of “nonbeing.” All of creation
lives on this boundary of finitude, and it is necessary and beneficial for us to work through the
collision of being and nonbeing. Wrestling with this tension produces anxiety, and the critical
decision we must make is how we will respond. Ideally, we should allow the anxiety of nonbeing
to point us to God, who makes possible the courage needed to conquer it and transform it into a
recognition of the goodness of our limits [32]. Niebuhr agrees that the temptation to sin arises not
from our “finiteness, dependence and weakness” but rather from our “anxiety about it,” identifying
a right mindset as the willingness to acknowledge that we are dependent, accept that we are finite,
and admit that we are insecure [26].

In order to respond appropriately to our limits as given by God, we must be intentional in recog-
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nizing what those limits are. Finitude characterizes various dimensions of our existence. Tillich
specifically identifies several of these in his Systematic Theology. To begin with, knowledge and
reason are themselves finite. Our finite reason then encounters four categories of finitude in being:
time, space, causality, and substance [32]. Inspired by Tillich’s taxonomy, we will organize our ex-
ploration around three major dimensions of human finitude: limits of knowledge and reason, limits
of physicality and resources, and limits of temporality and time. The remaining category, finitude
of substance, is the idea that our identity, our “being something in particular,” is also destined
to come to an end. In keeping with Barth’s belief that our intellectual, physical, and temporal
limitations are precisely what God uses to give us identity and meaning, it seems fit to fold this
category into the others.

Tillich first discusses the inherent finitude of human reason. Citing Nicolaus Cusanus and Immanuel
Kant, he asserts that reason is subject to the same limitations as the rest of our existence; yet, “[i]n
spite of its finitude, reason is aware of its infinite depth” [32]. It does not allow us to circumvent
our temporal or physical limits, but, paradoxically, it does afford us an awareness of the infinite
absolutes behind the finite categories of being. We see a parallel in Niebuhr’s explanation of the
“problem of finiteness and freedom,” which credits the imago Dei impressed upon humanity for
the ground on which our finite reason can recognize its own finitude [26]. Ecclesiastes puts it
poetically: God has “set eternity in the human heart; yet no one can fathom what God has done
from beginning to end” (3:11b). Despite the inability of our finite reason to comprehend eternity
in its fullness, we can understand enough to appreciate our own limitedness, and this “capacity for
self-transcendence” [26] is what ultimately enables us to identify and embrace our limits.

Our spatial finitude delimits our position not only in physical space, but also in what Tillich calls a
“social space” including our spheres of influence and sociocultural context [32]. We face the anxiety
of the realization that we occupy “borrowed” space: we do not own in any meaningful or permanent
way either the earth we tread or the earth we are made of. “[T]he dust returns to the ground it
came from, and the spirit returns to God who gave it” (Eccl. 12:7). Courage in this category affirms
our current space while recognizing its impermanence.

Tillich considers temporal finitude to be the central category of the four he identifies. It reminds
us of the ephemerality of all creation, revealing the “present” we live in as merely the infinitesimal
boundary between a bygone past which knew us not and an unknown future which will one day
forget us [32]. This is a major theme in Ecclesiastes, and with good reason. It is easy for us to
become anxious over the limits of our time on earth. Not even our legacy escapes the inevitability
of oblivion: “No one remembers the former generations, and even those yet to come will not be
remembered by those who follow them” (Eccl. 1:11). Biblical scholar Daniel C. Fredericks suggests
that it may be consistent with other Old Testament usage to read the book’s repeated exclamation
“vanity!” as “transience!”, finding comfort in the knowledge that even the problems and evil of
life are fleeting [15]. The courage identified by Tillich in this category is that which “affirms
temporality” [32], and Barth encourages each of us to rejoice in our being “this transient creature
at this particular hour” [3].

It is easy to recognize that our time is finite in duration, in its beginning and end, but Barth and
Tillich both observe limitations in our experience of time as well. We see time not from the point of
view of God’s eternal simultaneity, but from inside as we progress sequentially from past through
present to future, from cause to effect: “For us the past is the time which we leave and are in
no longer. . . It has remained behind, never to be restored” [3]. Yet, Barth concludes, there is
no dimension on which to write the story of a human life, no canvas on which to paint the grand
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narrative of covenental promise and redemptive fulfillment between God and his creation without
the progression of time. Tillich pushes the “finitude of causality” to its philosophical terminus.
In contrast with God’s divine attribute of aseity, or self-causedness, we must accept that we are
ultimately derivative, admitting in humility that we owe our existence to a cause that is outside
of ourselves. Courage from God helps us to find meaning in the affirmation that our contingency
gives us a place in reality [32].

4 Exploiting Intellectual Finitude

Accounting for the limits of human comprehension is a theme that is found in principles of computer
science generally and information security in particular. Renowned computer scientist Edsger
Dijkstra, in his essay The Humble Programmer, argues for “intellectually manageable programs,”
concluding that to be successful in creating software, one must “respect the intrinsic limitations of
the human mind” [10]. As three of Saltzer and Schroeder’s secure design principles will attest, the
importance of intellectual manageability is as important in information security as it is elsewhere
in computing.

4.1 Secure System Design Principles

The principle of economy of mechanism (popularly known as the “KISS” principle) states that
the design of secure systems should be “as simple and small as possible” [28]. Due to our limited
comprehension, it is more likely that someone will understand a simple design fully and correctly
than a complex one. The developers implementing a simple design are therefore less likely to make
implementation mistakes or overlook flaws. A small design affords fewer opportunities for such
oversights, and fewer avenues for malicious misuse (a “smaller attack surface”). Minimal design
has further benefits in that it can result in systems that are simple enough to be formally verified,
one of the requirements of another important model of secure design, the reference monitor [2].
In this way, we can also account for cases in which our limited understanding still fails to catch a
mistake.

We must acknowledge our limited comprehension when configuring a system as well. Saltzer and
Schroeder codify the principle of fail-safe defaults, asserting that secure systems should begin
with a default behavior of preventing access or actions and be configured to allow precisely those
actions that it should permit. (This resonates with our discussion of specificity and vocation from
Section 3.1.) In theory, the default-deny and default-allow approaches are equivalent: one could
allow only the set of permitted accesses or deny only the complement of that set. In practice,
however, our limited reason makes default-deny far preferable. Firewall configuration rulesets are
a notable example of this principle: a 2004 study found a quantitative correlation between the
complexity of rulesets from corporate firewalls and their likelihood of containing specific errors [36].
If omissions are possible, it is safer to enumerate what is permissible than what is impermissible.

The people who use a system are every bit as human as the ones who design and configure it, and
Saltzer and Schroeder identify an applicable principle here as well. The principle of psychological
acceptability underscores the importance of understandability in the interface presented to end-
users. If the people who interact with a security mechanism fail to understand how it is meant to
be used, they are likely to mis-apply it. If they fail to grasp its importance, they are likely to find
a way to circumvent it. Both failures can lead to security issues. Once again, our finite human
reason must be acknowledged and accounted for.
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4.2 Secrets

Barth recognizes that identity is one aspect of the gift given to us in our intellectual finitude, and the
study of authentication, or how to prove one’s identity, is a significant field in information security.
One of the most widely used means of authentication is requiring a user to demonstrate knowledge
of a specific datum: a password, passphrase, or PIN. Implicit in this use is the assumption that it
is something that no one else knows. We may take it for granted, but this is only possible because
of intellectual finitude, the boundary separating one person’s knowledge from another’s.

Confidentiality, generally provided by encryption, is another important pillar of information secu-
rity. In a world without intellectual boundaries, the concept of confidentiality would, of course, be
nonsense. Even if we were to grant the existence of a single piece of secret knowledge, the knower
would still be unable to share it, write it down, or use it in any way without relinquishing its
confidentiality. The distinction of mind that results from our finitude provides for the existence
of secrets, but more interestingly, it allows them to be used, shared, and kept. One of the funda-
mental concepts in cryptography is that of a key. Cipher algorithms are assumed to be publicly
known; it is knowledge of the correct key that enables a person to encrypt or decrypt data. As in
password-based authentication, the assumption that an adversary does not know and cannot learn
the key is implicit in any cryptosystem.

5 Exploiting Physical Finitude

The second aspect of created finitude we explore is our physical, or spatial, finitude. We are
embodied souls, and as such, we occupy a particular space and location. We cannot be everywhere,
or in two places at once, and to get from one place to another, being bound to move continuously
through space, we must actually travel there bit by bit. The resources and influence at our disposal
are similarly limited, both in specificity and extent. No person has the authority or ability to control
everything, or anything they wish, but rather each has a finite set of resources and a defined sphere
of influence.

5.1 Secure System Design Principles

Saltzer and Schroeder’s secure design principles acknowledge our spatial limits as well as the intel-
lectual limits discussed earlier. In their elaboration of the principle of separation of privilege they
explain how to exploit the bounds of physical access and ownership to improve the security of a
system: “Where feasible, a protection mechanism that requires two keys to unlock it is more robust
and flexible than one that allows access to the presenter of only a single key. . . . [T]he two keys
can be physically separated and distinct programs, organizations, or individuals made responsible
for them” [28]. The two-person concept (formerly “two-man rule”) mandated for nuclear safety in
the United States is an example of applying this principle in the most direct way.

Another consequence of physical finitude, as Tillich observed, is that each person has influence over
a limited amount of resources. This idea is implied in the applications of separation of privilege, in
that requiring an adversary to circumvent two separate security measures makes it more difficult
to carry out a successful attack. The work factor principle makes this explicit, urging system
designers to “compare the cost of circumventing the mechanism with the resources of a potential
attacker” [28]. Security mechanisms are always evaluated with respect to a well-defined attacker
model specifying the bounds of the adversary’s assumed capabilities. Conventional wisdom in
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information security says that any nontrivial system can be compromised given sufficient resources.
Only the finitude of the attacker enables us to declare it “secure.”

If we truly wish to maximize the security provided by the finitude of resources, then—inasmuch
as it is within our ability—we should attempt to minimize the resources available to each person.
From this observation comes what may be the most widely known of Saltzer and Schroeder’s recom-
mendations: the principle of least privilege. Entities within a computer system should be granted
“the least set of privileges necessary to complete the job” [28]. If an adversary can compromise an
account or program, this reduces the options available for parlaying the compromise into a more
significant attack. This principle recognizes the good we can derive from our boundedness, and
encourages us to maximize that good by setting the tightest bounds possible.

5.2 Multi-Factor Authentication

As we have previously noted, password authentication is a technique that depends on intellectual
finitude. On the other hand, the limits of our ability to memorize [21] leave this form of authen-
tication with a Goldilocks dilemma. Some passwords are too easy to guess, others are too hard
to remember, and it is difficult to find and enforce a balance that is “just right.” Recognizing our
limitations here means supplementing—if not supplanting—password authentication schemes, and
this is precisely the purpose of multi-factor authentication.

Multi-factor authentication, in which users prove their identity using more than one “factor,” is
another manifestation of the principle of separation of privilege discussed in the previous section. In
its most common configuration, the user authenticates by simultaneously demonstrating knowledge
of a specific datum and possession of a specific physical item. In terms of separation of privilege,
the two individuals are the person who knows the former and the person who holds the latter, and
the purpose technically remains to ensure that both individuals are present. When authenticating
a single user, this implies that the “individuals” are one and the same person.

Factors used in a multi-factor authentication scheme must be sufficiently different from each other
in order to be effective. Two user-chosen passwords are not much better than one, since an attacker
with the resources to guess or compromise one password is likely able to do the same thing for the
second. By analogy, putting a second lock on a door makes no difference if both of the keys are
kept on the same keychain. For authentication, different factors are often expressed as the maxim
“something you know, something you have, something you are.” A memorized passphrase differs
from a physical security key, which differs from a biometric factor like a fingerprint or retinal scan.
The likelihood that the same attacker has both guessed a user’s credentials and stolen a physical
device from them is much lower than the likelihood of either event in isolation. These factors work
because they exploit different aspects of the attacker’s finitude, some intellectual, others physical.

5.3 Distributed Consensus Algorithms

In recent years, a new means of exploiting our own limitedness ofresources to achieve productive
ends has come into the public eye in the form of cryptocurrencies and related blockchain technology.
A blockchain is a distributed public ledger: a permanent, ordered list of transactions that can be
viewed by everyone but is not overseen or controlled by anyone in particular. Blockchains are
constructed atop consensus algorithms, which allow a number of independent, distributed peers
to come to agreement on a computed result—in this case, the content of the ledger. However,
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any distributed system that is designed to allow unknown peers to join the computation process
must deal with the possibility of Sybil attacks [11]. In a Sybil attack, an adversary creates a large
number of malicious identities in order to influence the final result of a distributed computation.
Each of these previously-unknown participants can claim to be an independent entity, swaying the
final vote with the digital equivalent of ballot-stuffing.

Decentralized cryptocurrencies, then, need a way to prevent attackers from artificially inflating
their influence to a point where they can override the existing ledger with a craftily altered one.
Bitcoin [25] addresses this by requiring proof-of-work: honest participants will only accept a list
of transactions (or “block”) if it is accompanied by a solution to a computational puzzle based
on its contents. The puzzle is designed so that “mining” a new block by finding a solution is
computationally expensive, but verifying a provided solution is easy. This prevents the classic Sybil
attack by weighting participants’ influence by the number of CPU cycles they invest in generating
solutions to the puzzle. An attacker cannot have an unbounded amount of influence without an
unbounded amount of processing power. In essence, Bitcoin is made possible by tying a distributed
consensus protocol to finite real-world resources.

6 Exploiting Temporal Finitude

Perhaps the most familiar and oft-contemplated dimension of our created limitation under the
sun is that of time. We are placed on the earth one day, we disappear from it another, and this
interval is all the time we have for the work set before us. We are limited in time and duration,
both that of our existence and that of our influence, and restricted to traveling it in one direction
at an unchangeable rate. From this arises the concept of intractability, one of the central ideas
in computational complexity theory. A problem is said to be intractable if finding a solution,
though theoretically possible, requires an inordinately large amount of time. Computer science has
identified a number of such problems, which may be as esoteric as finding the minimum feedback
vertex set of a graph [18] or as accessible as finding the fastest way to solve a Rubik’s Cube of given
dimension [9]. Based on our observations, we might define intractability from a different angle: an
intractable problem is one that is, specifically as a result of our finitude, impossible in practice.
Once again, we can identify information security techniques that convert this limitation into an
important building block.

6.1 Cryptographic Hashes

Along with encryption, one of the most fundamental primitives of applied cryptography is crypto-
graphic hashing. A secure hash function must satisfy certain additional properties beyond what is
required of an ordinary hash [8]. Given a possible output of the hash function, it must be compu-
tationally infeasible to find a corresponding input (pre-image resistance). It must also be infeasible
to identify two inputs that generate the same output, regardless of what the output is (collision
resistance). It is obviously possible to find a preimage or collision by exhaustive search if given
an infinite amount of time, but the idea of infeasibility here is naturally predicated on an attacker
with finite time.

Cryptographic hashes are an example of “one-way functions,” and it is easy to see how their
properties result in unidirectional behavior. The hash output cannot exist before the input that
generates it, a relationship that is only meaningful because the time in which we are created flows
in a single direction, from cause to effect and not the other way around. It is unsurprising, then,

ACMS Journal and Proceedings Page 233 23rd Biennial Conference



that many uses of hashing in applied cryptography establish or enforce a causal (and therefore
temporal) ordering between events. It allows us to apply the created gift of our causal finitude in
the context of cryptographic protocols.

Hashing has several idiomatic uses in applied cryptography. One is to create a representative
“fingerprint” from arbitrary data that can be used when working with the original would be com-
putationally costly, unwieldy, or vulnerable to attack. This can be seen in the ubiquitous task of
password authentication. When a system authenticates a user by password, it must verify that
the password provided at login is the same as the one entered when the password was established.
However, if the system were to store its users’ passwords directly, an attacker who obtains read
access to the database of account information would learn the passwords directly and could then
impersonate any user on the system. Standard secure practice is to store instead a value derived
from the password using a cryptographic hash function [22]. Recovering the original password from
this value is tantamount to finding a preimage for the hash function, which, under the assumption
of preimage resistance, is a practical impossibility for finite attackers.

In the presence of a stronger attacker who can eavesdrop on authentication exchanges, a new
problem arises. Passwords may be protected at rest, but this is meaningless if they can still be
observed in flight. No matter how we attempt to obscure them when sending, if the data expected
by the authenticator is always the same, then an eavesdropper can break the scheme simply by
replaying data that was previously observed. The most straightforward way to solve this problem
is by introducing a random value known as a nonce (so named because it is used “for the nonce,”
now and never again). The system sends a randomly chosen nonce to the user, and the user must
produce a response based on both their password and the nonce. A natural choice is to hash the
two values together in some fashion, ensuring that an eavesdropper cannot learn the password by
observing the transmitted response. The server computes the same hash from the user’s password
and the current nonce and compares the response to determine whether authentication succeeds.

Nonces are, we observe, another tool for harnessing the temporal finitude of an attacker. They are
the cryptographic analogue of Barth’s observation that each person’s life is unique, offered “once
and not twice; once and never again” [3]. The problem solved by adding a nonce to the protocol is
that an eavesdropper learns the only correct response as soon as it is used. In the challenge/response
version, the eavesdropper learns one correct response, but its usefulness is past as soon as it has
been observed, and it will be a very long time until, by a coincidence of random number generation,
the same nonce is reused. If the attacker were not constrained by the monotonic flow of time or
bounded to live a certain span of time, the addition of a nonce would make no difference. Our
temporal limitations make the protocol work.

A similar approach to harnessing temporality is found in one-time password schemes. One-time
passwords, in a sense, automate the idea behind challenge/response authentication. Like chal-
lenge/response, the user must provide different information at each login, but here the system
and user both derive the next password independently, eliminating the need for a back-and-forth
exchange. The user simply sends the next one-time password and the system verifies it. Im-
plementations of one-time passwords make use of hashes and nonces in much the same way as
challenge/response protocols. The earliest suggestion, due to Lamport [19] and used in the S/KEY
authentication system [17], is based on hash chains. Beginning with a seed value, a cryptographic
hash is applied repeatedly until a set number of values have been generated. These values are then
used in reverse order as one-time passwords. The user retains the seed, in order to be able to
produce the next password in sequence, and an eavesdropper cannot determine what comes next,
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only what has gone before. Current one-time password schemes, often used in hardware tokens
for two-factor authentication, are essentially challenge/response with a simple counter used as the
nonce. This counter is incremented with each successful authentication, as in HOTP [23], or at
regular time intervals, as in TOTP [24].

Another application that relies on the one-way property of hashes is known as a commitment
scheme. Suppose a medical researcher has discovered the cure for some common ailment. She
knows that her discovery will bring her wealth and fame and wishes to publish it in a medical
journal. However, she also knows that there is a danger of her work—and, more importantly, the
credit—being stolen by an anonymous reviewer during the lengthy publication process. To prevent
this, she runs her name and paper text through a cryptographic hash function and publishes the
output as an advertisement in a widely-circulated newspaper. Once this “commitment” goes to
press, she submits the paper for review. If a dishonest reviewer attempts to publish and claim
credit for her work, she can prove to anyone that she knew the details of the cure first by showing
them her submission and the newspaper. The unidirectionality of the hash function proves that her
knowledge of the paper’s contents had to exist prior to the advertisement running. This scheme
also keeps her honest, as the hash corresponds only to her paper exactly as it initially stood; there is
no way for her to make an improvement later and claim that it was part of her original submission.
Privacy-oriented cryptocurrencies such as Incognito [34] make use of this latter application.

6.2 Public-Key Cryptography

The field of cryptography saw a revolution in 1976 with the introduction of asymmetric cryptosys-
tems, first and famously published in Whitfield Diffie and Martin Hellman’s paper “New Directions
in Cryptography” (though they now appear to have been discovered in secret by government se-
curity organizations several years prior). Diffie and Hellman’s main contribution was an algorithm
for key establishment, allowing two parties communicating over an insecure medium to securely
agree on a new, random cryptographic key. Reconstructing the key solely from the information sent
between the two parties requires solving the intractable discrete logarithm problem, which means
that even an adversary who has eavesdropped on the entire exchange cannot, in practice, derive
the same key.

The same idea has been applied to encryption to create public-key encryption and signature schemes
such as RSA [27]. As with symmetric cryptography, the security of the cryptosystem is vested in
the assumption of intellectual finitude: that an attacker does not know a specific private key. Unlike
symmetric encryption, however, these algorithms involve a second key that functions as the inverse
of the first, so that data encrypted with one key of a pair can be decrypted with the other. The
asymmetry which gives this class of algorithms its name is in the treatment of the two keys: the
private key is kept secret, but the other key is made public.

Publishing part of a keypair does come with an important caveat. The precise mathematical
relationship between the two keys means that one may contain sufficient information to derive the
other. In theory, it is not impossible to break a cipher by calculating the private key, but it can still
be considered secure in practice if doing so requires solving an intractable problem. Simon Singh
puts this in perspective in his extensive history of cryptography, The Code Book: “It is now routine
to encrypt a message. . . so that all the computers on the planet would need longer than the age
of the universe to break the cipher” [30]. In other words, it is our temporal finitude that allows us
to assume that a private key remains secret, even though its mathematical counterpart is known
to an attacker. The RSA cryptosystem, for example, relies on the intractability of determining the
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prime factorization of large integers. An attacker with an unlimited amount of time could decipher
any encrypted message, but for one with a finite amount of time, it is a practical impossibility.

We can therefore credit our finitude for the multitude of new cryptographic techniques that have
emerged from the invention of public-key cryptography. In addition to encrypting data for confi-
dentiality, the keys can be used in reverse so that the owner of the keypair encrypts data using the
private key. The result can then be decrypted using the corresponding public key, allowing anyone
to verify that the encrypted data was created by the holder of the private key. This forms the
basis of what we call “digital signatures,” in which a person can securely “sign” a document, cryp-
tographically binding their identity to the signed data in a way that can subsequently be verified
by anyone. Here we even see echoes of Barth’s discussion on how our God-given limits define an
identity and calling for each person.

It is important here to dispel some popular ideas about the impact of quantum computing on
the idea of intractability. Perhaps the most famous result to date in the quantum arena is Peter
Shor’s algorithm for efficient calculation of discrete logarithms and integer factorizations [29], which
demonstrates that a sufficiently powerful quantum computer could break both Diffie–Hellman key
agreement and RSA encryption. Unless one is familiar with further results in quantum complexity
theory, it is reasonable to question whether this implies that quantum computers could one day
conquer algorithmic intractability altogether. Popular entertainment has reinforced this miscon-
ception (the Netflix miniseries Devs is one recent example), but in reality even quantum systems
have bounds to be explored. Many problems are known to be “QMA-complete,” or believed to
be difficult even for quantum computers [7]. Using this idea, research in post-quantum cryptog-
raphy has been producing quantum-resistant algorithms since the 2000s [4], and enough variety
has emerged that NIST has launched a competition, like those which produced DES, AES, and
SHA-3, to standardize a quantum-resistant cryptosystem [1]. We can push back our boundaries
with innovation, but we cannot escape our limitations entirely.

7 Conclusion
If we recognize our finitude as a gift, we have a basis on which to confront the prideful thinking
and problematic behaviors that arise from rejecting it. Refusal to accept that our knowledge is
limited fails to acknowledge that omniscience belongs to God. This temptation drives actions such
as information theft and violations of digital privacy. Refusal to accept that our space and resources
are limited fails to acknowledge that omnipresence and omnipotence belong to God. Here we see a
motivation for botnets, in which attackers seek to increase their own power by compromising and
utilizing computing resources that belong to others. Refusal to accept that our time is limited fails
to acknowledge that eternity belongs to God, which explains why some self-propagating malware
seems to have no purpose beyond outliving its author. In contrast, a right response to finitude
is naturally modeled by Jesus Christ, who did not spurn human form and limitation but rather
accepted them in humble obedience (Phil. 2:7–8).

Finitude is such an ingrained part of the human experience that we can easily take it for granted.
Careful reading of Scripture reveals that our created limitations are part of God’s “very good”
creation, and the book of Ecclesiastes provides an affirmation of life in a finite world. If we are
intentional about viewing human finitude as a gift from God, we can begin to see its pervasive
goodness. Design principles and cryptographic techniques of information security make for a sur-
prisingly apt example, but there are undoubtedly many other places in which the recognition and
embracing of our finitude can illuminate God-given gifts that we may otherwise never have seen.
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Abstract
We consider the second order linear recurrence Un+2 = PUn+1 − QUn, with P and Q in Z
and initial conditions U0 = 0 and U1 = 1. We show that for all integers r, s, k, l such that
r + s = k + l, and Gn, Hn satisfying the recurrence relation and initial conditions G0, G1 and
H0, H1 respectively, we have GrHs − GkHl = Qt (Gr−tHs−t − Gk−tHl−t) for all integers t. We
also give a relationship between the period and the rank of appearance when the recurrence is
considered over Zp. We obtain as a corollary that the period of the Fibonacci sequence is always
even.

1 Introduction

The well known Fibonacci sequence, 0, 1, 1, 2, 3, 5, 8, 13, 21, . . . is defined by the second order
recurrence relation Fn+2 = Fn+1 + Fn with initial conditions F0 = 0 and F1 = 1. The terms of the
Fibonacci sequence satisfy many beautiful identities. Vajda’s book [1] has a good compilation of
them. In [4], E. Lucas studied the general linear recurrence of order 2. He stated several identities
and divisibility properties satisfied by the terms of the sequence . In this paper we prove some of
the identities stated by Lucas. These identities generalize those satisfied by the Fibonacci sequence.
Following Lucas notation we let P and Q ̸= 0 be two relatively prime integers and consider the
second order linear homogeneous recurrence relation

Un+2 = PUn+1 − QUn for n ≥ 0, and U0 = 0, U1 = 1. (1)

over the field of rational numbers Q or the finite field Zp. We denote by f(x) = x2 − Px + Q the
characteristic polynomial of the recurrence and by E be the splitting field of f(x). We assume that
the discriminant of f(x), ∆ = P 2 − 4Q ̸= 0 and denote by α and β the roots of f(x) in E. We set
δ = α − β. If f(x) is irreducible over Q or Zp then E is a vector space of dimension two over Q or
Zp and every element e of E can be written uniquely as e = a + bα with a and b in Q or Zp. The
elements α, β and δ of E satisfy, α ̸= β and

α + β = P, αβ = Q, α2 = Pα − Q, β2 = Pβ − Q, δ2 = ∆. (2)

If f(x) is not irreducible we may treat α and β as formal symbols over Q or Zp satisfying (2), and
all the computations carry over as in the case when f(x) is irreducible. Multiplication in E is given
by

(a + bα)(c + dα) = (ac − Qbd) + (ad + b(Pd + c))α. (3)

The Lucas sequence Vn associated to the recurrence is defined as Vn = αn + βn.
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Since αn+2 = Pαn+1 − Qαn and βn+2 = Pβn+1 − Qβn we have

Vn+2 = αn+2 + βn+2 = P
(
αn+1 + βn+1

)
− Q (αn + βn) = PVn+1 − QVn.

This shows that Vn satisfies the recurrence relation with initial conditions V0 = 2 and V1 = P .

2 Identities

As mentioned in the introduction, Vajda’s book [1], contains more than 100 identities satisfied by
the Fibonacci and the Lucas sequence. In this section we will give a generalization, displayed below,
of identities (18), (19a), (19b), (20a), and (20b) found on page 28 of [1].

Gn+iHn+j − GnHn+i+j = Qn (GiHj − G0Hi+j) (V18)
Vn+iUn+j − VnUn+i+j = Qn (ViUj − V0Ui+j) = −QnUiVj (V19a)

Gn+iGn+j − GnGn+i+j = Qn (GiGj − G0Gi+j) (V19b)
Un+iUn+j − UnUn+i+j = QnUiUj (V20a)
Vn+iVn+j − VnVn+i+j = Qn (ViVj − V0Vi+j) = −Qn∆UiUj (V20b)

We start by extending the sequence Un to negative indices by defining

U−n = (PU−n+1 − U−n+2) /Q for n ≥ 1.

We have the following proposition relating negative terms to positive terms.
Proposition 1. For every integer n we have

U−n = −Un/Qn and (4)
V−n = Vn/Qn (5)

Proof. The identity U−n = −Un/Qn follows by induction on n and the definitions of Un, and U−n.
For V−n, we have

V−n = α−n + β−n = (αn + βn) /Qn = Vn/Qn.

The following Lemma shows that the powers of the roots are good book keeping devices for the
elements of the recurrence sequence.
Lemma 1. For every integer r

αr = −QUr−1 + Urα and βr = −QUr−1 + Urβ. (6)

Proof. Induction on r. First we will assume that r ≥ 0.

1. α0 = 1 = 1 + 0 · α = −Q (−(1/Q) + U0α) = −QU−1 + U0α.

2. We have α1 = 0 + 1 · α = U0 + U1α.
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3. Assume αr = −QUr−1 + Urα. Then

αr+1 = αr · α = (−QUr−1 + Urα)α
= −QUr−1α + Urα2 = −QUr−1α + Ur(Pα − Q)
= −QUr + (PUr − QUr−1)α = −QUr + Ur+1α.

For r < 0 we observe that
α−1 = P

Q
− 1

Q
α = −QU−2 + U−1α.

Using this last identity and induction on r we can show that αr = −QUr−1 + Urα in this case
also.

Corollary 2. For every integer r we have

Ur = (αr − βr) / (α − β) (7)
Vr = PUr − 2QUr−1 = Ur+1 − QUr−1 (8)

Proof. Since αr = −QUr−1 + Urα and βr = −QUr−1 + Urβ we have

αr − βr = Urα − Urβ = Ur(α − β).

Since α − β ̸= 0 we can solve for Ur to get identity (7). Since

Vr = αr + βr = (−QUr−1 + Urα) + (−QUr−1 + Urβ)
= Ur (α + β) − 2QUr−1 = PUr − 2QUr−1

we get identity (8).

Lemma 2. Let r and s be two integers. Then

αrαs = −Q (UrUs − QUr−1Us−1) + (−QUr−1Us + PUrUs − QUrUs−1) α (9)
Ur+s = −QUr−1Us + PUrUs − QUrUs−1 (10)

∆UrUs − VrVs = −2 (αrβs + αsβr) (11)
∆UrUs − VrVs = Q (∆Ur−1Us−1 − Vr−1Vs−1) (12)
VrVs − 2Vr+s = −∆UrUs (13)
VrUs − VsUr = Q (Vr−1Us−1 − Vs−1Ur−1) (14)
VrUs + VsUr = 2Ur+s = V0Ur+s or (15)

VrUs − 2Ur+s = −UrVs. (16)

Proof. By identity (6), we have αr = −QUr−1 + Urα, αs = −QUs−1 + Usα. Therefore,

αrαs = (−QUr−1 + Urα) (−QUs−1 + Usα)

=
(
Q2Ur−1Us−1 − QUrUs

)
+ (−QUr−1Us + Ur (PUs − QUs−1)) α

=
(
Q2Ur−1Us−1 − QUrUs

)
+ (−QUr−1Us + PUrUs − QUrUs−1) α
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This proves identity (9). Also,

αrαs = αr+s = QUr+s−1 + Ur+sα.

This implies that

QUr+s−1 + Ur+sα = αr+s =
(
Q2Ur−1Us−1 − QUrUs

)
+ (−QUr−1Us + PUrUs − QUrUs−1) α.

Equating coefficients of the last two expressions in the above equation we get (10). We also have,

VrVs = (αr + βr) (αs + βs) = (αr − βr) (αs − βs) + 2 (αrβs + αsβr)

= ∆
[

αr − βr

α − β

] [
αs − βs

α − β

]
+ 2 (αrβs + αsβr)

= ∆UrUs + 2 (αrβs + αsβr) .

This proves (11). Next, we have

VrVs − ∆UrUs = 2 (αrβs + αsβr) = 2Q
(
αr−1βs−1 + αs−1βr−1

)
= Q (Vr−1Vs−1 − ∆Ur−1Us−1) .

This proves identity (12). By expanding we have

2VrVs = 2(αr + βr)(αs + βs) = 2
(
αr+s + βr+s

)
+ 2 (αrβs + αsβr)

= 2Vr+s + VrVs − ∆UrUs.

Therefore, VrVs − 2Vr+s = −∆UrUs which is identity (13). Identities (14) and (15) follow from

(αr + βr) (αs − βs) /(α − β) =
(
αr+s + βrαs − αrβs − βr+s

)
/(α − β)

(αs + βs) (αr − βr) /(α − β) =
(
αr+s − βrαs + αrβs − βr+s

)
/(α − β)

by adding and subtracting and observing that

2 (βrαs − αrβs) /(α − β) = Q (Vr−1Us−1 − Vs−1Ur−1) .

Theorem 3. Let Gn and Hn be two sequences with initial conditions G0, G1 and H0, H1 respectively,
satisfying the linear recurrence. If r + s = k + l then

UrUs − UkUl = Q (Ur−1Us−1 − Uk−1Ul−1) (17)
GrHs − GkHl = Q (Gr−1Hs−1 − Gk−1Hl−1) (18)

VrVs − VkVl = Q (Vr−1Vs−1 − Vk−1Vl−1) (19)
∆UrUs − VkVl = Q (∆Ur−1Us−1 − Vk−1Vl−1) (20)

Proof. From identity (9) we get

αrαs = −Q (UrUs − QUr−1Us−1) + (UrUs+1 − QUr−1Us) α and
αkαl = −Q (UkUl − QUk−1Ul−1) + (UkUl+1 − QUk−1Ul) α
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By assumption r + s = k + l, so αrαs = αkαl. Equating the terms of the left hand side of the last
two identities we have UrUs − QUr−1Us−1 = UkUl − QUk−1Ul−1. Rearranging this last identity we
get identity (17). To prove identity (18) we observe that G1Un − G0QUn−1 and H1Un − H0QUn−1
satisfy the recurrence relation and have initial conditions G0, G1 and H0, H1 respectively. Therefore,
Gn = G1Un − G0QUn−1 and Hn = H1Un − H0QUn−1. So,

GrHs − GkHl = (G1Ur − G0QUr−1) · (H1Us − H0QUs−1)
− (G1Uk − G0QUk−1) · (HlUr − H0QUl−1)
= G1H1UrUs − G0H1QUr−1Us − H0G1QUrUs−1

+ G0H0Q2Ur−1Us−1 − G1H1UkUl + G0H1QUk−1Ul

+ H0G1QUkUl−1 − G0H0Q2Uk−1Ul−1

= G1H1 (UrUs − UkUl) − G0H1Q (Ur−1Us − Uk−1Ul)
− H0G1Q (UrUs−1 − UkUl−1)
+ G0H0Q2 (Ur−1Us−1 − Uk−1Ul−1)
= G1H1Q (Ur−1Us−1 − Uk−1Ul−1)
− G0H1Q2 (Ur−2Us−1 − Uk−2Ul−1)
− H0G1Q2 (Ur−1Us−2 − Uk−1Ul−2)
+ G0H0Q3 (Ur−2Us−2 − Uk−2Ul−2)
= Q [G1H1 (Ur−1Us−1 − Uk−1Ul−1)
− G0H1Q (Ur−2Us−1 − Uk−2Ul−1)
− H0G1Q (Ur−1Us−2 − Uk−1Ul−2)

+G0H0Q2 (Ur−2Us−2 − Uk−2Ul−2)
]

= Q (Gr−1Hs−1 − Gk−1Hl−1) .

This proves identity (18). From identity (12) we get

VrVs − QVr−1Vs−1 = ∆ (UrUs − QUr−1Us−1) (21)
= ∆ (UkUl − QUk−1Ul−1) by rearranging (17) (22)
= VkVl − QVk−1Vl−1 by using (12) again. (23)

Therefore, setting the left hand side of (21) equal to (23) and the right hand side of (21) equal to
(22) we get

VrVs − QVr−1Vs−1 = VkVl − QVk−1Vl−1 and
∆ (UrUs − QUr−1Us−1) = VkVl − QVk−1Vl−1.

Rearranging these two last identities we get

VrVs − VkVl = Q (Vr−1Vs−1 − Vk−1Vl−1) and
∆UrUs − VkVl = Q (∆Ur−1Us−1 − Vk−1Vl−1) .

The following theorem is the main result of this section.
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Theorem 4. For all integers k, l, r, s, and t with k + l = r + s we have

UrUs − UkUl = Qt (Ur−tUs−t − Uk−tUl−t) (24)
GrHs − GkHl = Qt (Gr−tHs−t − Gk−tHl−t) (25)

VrVs − VkVl = Qt (Vr−tVs−t − Vk−tVl−t) (26)
∆UrUs − VkVl = Qt (∆Ur−tUs−t − Vk−tVl−t) (27)

Proof. This follows by iterating identities (17), (18), (19), and (20).

We will refer to identities (24), (25), (26) and (27) as U(r, s, k, l, t),
GH(r, s, k, l, t), V (r, s, k, l, t), and ∆UV (r, s, k, l, t) respectively.

Now we can see that GH(n + i, n + j, n, n + i + j, n) produces

Gn+iHn+j − GnHn+i+j = Qn (GiHj − G0Hi+j) . (V18)

Replacing G by V and H by U into (V 18) and using (15), since V0 = 2, produces

Vn+iUn+j − VnUn+i+j = Qn (ViUj − V0Ui+j) = −QnUiVj . (V19a)

Replacing G by U and H by V into (V 18) and recalling that U0 = 0 produces

Un+iVn+j − UnVn+i+j = Qn (UiVj − U0Vi+j) = QnUiVj . (V19b)

Replacing G by U and H by U into (V 18) and recalling that U0 = 0 produces

Un+iUn+j − UnUn+i+j = Qn (UiUj − U0Ui+j) = QnUiUj . (V20a)

Replacing G by V and H by V into (V 18) and using (13), since V0 = 2, produces

Vn+iVn+j − VnVn+i+j = Qn (ViVj − V0Vi+j) = −Qn∆UiUj . (V20b)

Corollary 5. For every integer n, i, and j

U2
n − Un+iUn−i = Qn−iU2

i Catalan’s identity (28)
U2

n − Un+1Un−1 = Qn−1 Cassini’s identity (29)
UmUn+1 − UnUm+1 = QnUm−n D’Ocagne’s Identity (30)

Proof. Catalan’s identity is obtained from U(n, n, n + i, n − i, n − i). Cassini’s identity is given by
U(n, n, n + 1, n − 1, n − 1). D’Ocagne’s identity results from U(m, n + 1, n, m + 1, n) and recalling
that U0 = 0.

3 Divisibility Properties

The terms of the recurrence sequence Un and the Lucas sequence Vn satisfy several divisibility
properties. Below, we will prove some of them.
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Proposition 6. Let n and d be positive integers, then

(i) Ud divides Udn.

(ii) If n is even Vd divides Udn.

(iii) If n is odd Vd divides Vdn.

Proof. (i) By identity (6) we have αd = Udα − QUd−1 and αdn = Udnα − QUdn−1. Therefore,
αd ≡ −QUd−1 mod Ud and it follows that αdn ≡ (−QUd−1)n mod Ud. We also have, αdn ≡ Udnα −
QUdn−1 mod Ud. Together, these two identities imply Udnα +(QUdn−1 + (−QUd−1)n) ≡ 0 mod Ud.
Therefore, Udn ≡ 0 mod Ud and QUdn−1 ≡ (−QUd−1)n mod Ud.

(ii) By definition αd + βd = Vd, so we get αd ≡ −βd mod Vd. Since n is even we have αdn ≡
βdn mod Vd. This implies that Udn ≡ αdn − βdn ≡ 0 mod Vd.

(iii) As in part (ii), we have αd ≡ −βd mod Vd. Since n is odd we have αdn ≡ −βdn mod Vd. This
implies that Vdn ≡ αdn + βdn ≡ 0 mod Vd.

Proposition 7. Let n and d be positive integers, then

(i) Udn = Ud

[∑n−1
i=0

(
n
i

)
(−Q)iUn−i−1

d U i
d−1Un−i

]
.

(ii) If n = 2k then Udn = UdkVdk.

(iii) If n = 2k + 1 then Vdn = Vd

[
(−1)kQkd +

∑k−1
i=0 (−1)iQidV2(k−i)d

]
.

Proof. (i) By Lemma 1, we have αd = Udα + hd and αnd = Undα + hnd where hd = −QUd−1 and
hnd = −QUnd−1. Therefore,

Undα + hnd = αnd =
(
αd
)n = (Udα + hd)n =

n∑
i=0

(
n

i

)
(Udα)n−i

hi
d

=
n∑

i=0

(
n

i

)
(Ud)n−i

αn−ihi
d

=
n∑

i=0

(
n

i

)
Un−i

d hi
dαn−i =

n∑
i=0

(
n

i

)
Un−i

d hi
d (Un−iα + hn−i)

=
n∑

i=0

(
n

i

)(
Un−i

d hi
dUn−iα + Un−i

d hi
dhn−i

)
=

n∑
i=0

(
n

i

)
Un−i

d hi
dhn−i + α

n∑
i=0

(
n

i

)
Un−i

d hi
dUn−i

=
n∑

i=0

(
n

i

)
Un−i

d (−QUd−1)i (−QUn−i−1)

+ α

n−1∑
i=0

(
n

i

)
Un−i

d (−QUd−1)i
Un−i

=
n∑

i=0

(
n

i

)
(−Q)i+1

Un−i
d U i

d−1Un−i−1 + α

n∑
i=0

(
n

i

)
(−Q)i

Un−i
d U i

d−1Un−i.
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Since U0 = 0, we have

Udn =
n∑

i=0

(
n

i

)
(−Q)i

Un−i
d U i

d−1Un−i

=
n−1∑
i=0

(
n

i

)
(−Q)i

Un−i
d U i

d−1Un−i

= Ud

n−1∑
i=0

(
n

i

)
(−Q)i

Un−i−1
d U i

d−1Un−i.

(ii) Udn = αdn−βdn

α−β = α2dk−β2dk

α−β = αdk−βdk

α−β ·
(
αdk + βdk

)
= UdkVdk.

(iii) Let x = αd and y = βd. We have xi + yi = Vid and (xy)i = Qid. Also,

Vdn = αd(2k+1) + βd(2k+1)

= x2k+1 + y2k+1

= (x + y)
(
x2k − x2k−1y + · · · + (−1)ix2k−iyi + · · · − xy2k−1 + y2k

)
= Vd

((
x2k + y2k

)
−
(
x2k−1y + xy2k−1)+ · · · + (−1)kxkyk

)
= Vd

((
x2k + y2k

)
− xy

(
x2k−2 + y2k−2)+ · · · + (−1)kxkyk

)
= Vd

((
x2k + y2k

)
− xy

(
x2(k−1) + y2(k−1)

)
+ · · · + (−1)kxkyk

)
= Vd

(
V2kd − (xy)V2(k−1)d + · · · + (−1)i(xy)iV2(k−i)d + · · · + (−1)k(xy)k

)
= Vd

(
V2kd − QdV2(k−1)d + Q2dV2(k−2)d + · · · + (−1)iQidV2(k−i)d + · · · + (−1)kQkd

)
= Vd

(
(−1)kQkd +

k−1∑
i=0

(−1)iQidV2(k−i)d

)
.

Proposition 8. If gcd(P, Q) = 1 and n ≥ 1, then gcd(Un, Q) = 1 and gcd(Vn, Q) = 1.

Proof. Induction on n. Since gcd(U1, Q) = gcd(1, Q) = 1 and gcd(U2, Q) = gcd(P, Q) = 1 the
result is true for n = 1 and n = 2. Assume that

gcd(U1, Q) = gcd(U2, Q) = · · · = gcd(Un−1, Q) = gcd(Un, Q) = 1.

We will show that gcd(Un+1, Q) = 1. Since Un+1 = PUn − QUn−1 we have gcd(Un+1, Q) =
gcd(PUn − QUn−1, Q). If gcd(PUn − QUn−1, Q) = d, then since d divides Q and gcd(P, Q) = 1 we
have gcd(P, d) = 1. Since gcd(P, d) = 1, d divides PUn − QUn−1, and Q, so d divides Un. By in-
duction hypothesis gcd(Un, Q) = 1. We conclude that d = 1. Let d = gcd(Vn, Q). By equation (8),
Vn = PUn − 2QUn−1. So PUn ≡ 0 mod d. Since gcd(Un, Q) = gcd(P, Q) = 1 we have d = 1.

Theorem 9. Suppose that gcd(P, Q) = 1 and m ≥ n ≥ 1, then

(i) gcd(Um, Un) = Ugcd(m,n).

(ii) If m/d and n/d are odd gcd(Vm, Vn) = Vgcd(m,n).

Proof.
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(i) Let d = gcd(m, n) and d1 = gcd(Um, Un). By Proposition 6, Ud divides Um and Un. So, Ud ≤ d1.
Since d = gcd(m, n) there exist positive integers r and and s such that d = rm − sn. If we replace
m by rm and n by sn into identity (30) we have

QsnUrm−sn = UrmUsn+1 + QUsnUrm−1 − PUrmUsn (31)

By Proposition 6, Um divides Urm and Un divides Usn. Since d1 divides Um and Un, identity
(31) implies that d1 divides QnUrm−sn. Since d1 divides Un, by Proposition 8 we must have
gcd(d1, Q) = 1. Therefore d1 divides Urm−sn = Ud. This shows that d1 ≤ Ud. We have shown that
Ugcd(m,n) ≤ d1 ≤ Ugcd(m,n), so gcd(Um, Un) = Ugcd(m,n).

(ii) Let d2 = gcd(Vm, Vn). By Proposition 6 (iii), Vd divides Vm and Vn, so Vd ≤ d2. There exists
integers r and s such that rm + sn = d. Since r(m/d) + s(n/d) = 1, and m/d , n/d are both
odd we have either r is odd and s is even or r is even and s is odd. Suppose r is odd and s is
even. By assumption Vm ≡ 0 mod d2 and Vn ≡ 0 mod d2. This implies that αm ≡ −βm mod d2
and αn ≡ −βn mod d2.

αd ≡ αrm+sn ≡ αrmαsn ≡ (αm)r (αn)s ≡ (−βm)r (−βn)s

≡ −βrmβsn since r is odd and s is even
≡ −βrm+sn ≡ −βd mod d2.

Therefore, Vd ≡ αd + βd ≡ 0 mod d2. That is, d2 divides Vd. We conclude that Vd = d2.

4 Rank of Appearance and Period Modulo a Prime

In this section we assume that Q ̸= 0 in Zp, since otherwise, the recurrence becomes a recurrence
of order 1.
Definition 10. The rank of appearance of p in Un is the smallest positive integer ρ such that Uρ = 0.
The period of the recurrence is the smallest positive integer π such that Uπ = 0 and Uπ+1 = 1.

Since in this case, the splitting field Ep of the characteristic equation is finite, so α and β have finite
order in E×

p , the multiplicative group of nonzero elements of Ep. We denote the order of α and β
by ord(α) and ord(β) respectively. First, we consider the case when the characteristic polynomial
of the general recurrence relation

xn+k = ak−1xn+(k−1) + ak−2xn+(k−2) + · · · + a2xn+2 + a1xn+1 + a0xn (32)

with initial conditions W0 = W1 = · · · = Wk−3 = Wk−2 = 0 and Wk−1 = 1 and a0 ̸= 0 has a root
of multiplicity k. We have the following theorem.
Theorem 11. Let f(x) = xk − ak−1xk−1 − ak−2xk−2 + · · · + a2x2 + a1x + a0 be the characteristic
polynomial of (32). Assume that f(x) = (x − α)k, that is, α ̸= 0 is a root of multiplicity k. If p ≥ k
then Wp = Wp+1 = · · · = Wp+(k−3) = Wp+(k−2) = 0 and Wp+(k−1) = α.

Proof. It is well known, see Remark 6.23 in [3], that in this case Wn = g(n)αn with

g(n) = g0 + g1n + g2n2 + · · · + gk−2nk−2 + gk−1nk−1,

gi in Ep and g(0)α0 = g(1)α1 = g(2)α2 = · · · = g(k−3)αk−3 = g(k−2)αk−2 = 0 and g(k−1)αk−1 =
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1. We observe that in our case Ep = Zp. Since p ≥ k the coefficients gi are uniquely determined
by the initial conditions. Also, since α ̸= 0, we have g(0) = g(1) = · · · = g(k − 3) = g(k − 2) =
0. It follows that Wp = g(p)αp = g(0)αp = 0, Wp+1 = g(p + 1)αp+1 = g(1)αp+1 = 0, . . . ,
Wp+(k−2) = g(p+(k −2))αp+(k−2) = g(k −2)αp+(k−2) = 0 and Wp+(k−1) = g(p+(k −1))αp+(k−1) =
g(k − 1)αk−1αp = α since g(k − 1)αk−1 = 1 and αp = α.

Corollary 12. If the characteristic polynomial of the second order linear recurrence xn+2 = Pxn+1−
Qxn has a multiple root then Up = 0 and Up+1 = α in Zp for all primes. That is, the rank is p and
the period is p ord(α).

Proof. That Up = 0 and Up+1 = α in Zp follows immediately from the theorem above. Since p is
prime the rank is p. The statement about the period is a consequence of Lemma 5 below.

For the rest of this section we assume that ∆ ̸= 0 in Zp.
Lemma 3. Let m = lcm(ord(α), ord(β)). Then Um = 0 and Um+1 = 1. That is, the rank of
appearance and the period exist and satisfy ρ ≤ π = m.

Proof. Since 1 = αm = Umα − QUm−1 and 1 = βm = Umβ − QUm−1 we have 0 = Um(α − β). Since
α − β ̸= 0 we have Um = 0. Also, αm+1 = Um+1α − QUm = Um+1α Therefore, 1 = αm = Um+1.
By definition of the rank of appearance and period ρ ≤ π. By the minimality of the period π ≤ m.
Also, απ+1 = Uπ+1α − QUm = α. So, απ = 1 and βπ = 1. These identities imply π is a multiple of
ord(α) and ord(β). Therefore, m ≤ π.

Lemma 4. Un = 0 modulo p if and only if ρ divides n.

Proof. By Proposition 6, part (i) if ρ divides n then Uρ divides Un and it follows that Un = 0.
Conversely if Un = 0, let n = qρ + r with r < ρ. Then by identity (10) and Uqρ = UqUρ = 0 we
have

0 = Uqρ+r = −QUqρ−1Ur + PUqρUr − QUqρUr−1

= −QUqρ−1Ur

By Theorem 9, gcd(Uqρ−1, Uqρ) = 1. So Uqρ−1 ̸= 0 modulo p. Also, Q ̸= 0 modulo p. Therefore,
Ur = 0 modulo p. This is a contradiction since r < ρ.

Lemma 5. π = ρ ord (Uρ+1) .

Proof. Let u = ord (Uρ+1) let T 2
n satisfies the second order linear recurrence relation with initial

conditions T 2
0 = 0 and T 2

1 = Uρ+1. As mentioned in the proof of Theorem 33 T 2
n = T 2

1 Un −
T 2

0 QUn−1 = Uρ+1Un. By the definition of T 2
n it follows that Uρ+n = T 2

n . Therefore, U2ρ =
Uρ+ρ = T 2

ρ = Uρ+1Uρ = 0 and U2ρ+1 = T 2
ρ+1 = Uρ+1Uρ+1 = U2

ρ+1. Similarly, if T 3
n satisfies

the second order linear recurrence relation with initial conditions T 3
0 = 0 and T 3

1 = U2
ρ+1. Then

T 3
n = T 3

1 Un − T 3
0 QUn−1 = U2

ρ+1Un. By the definition of T 3
n it follows that U2ρ+n = T 3

n . Therefore,
U3ρ = U2ρ+ρ = T 3

ρ = U2
ρ+1Uρ = 0 and U3ρ+1 = T 3

ρ+1 = U2
ρ+1Uρ+1 = U3

ρ+1. Continuing in this
manner one can see that Uuρ = 0 and Uuρ+1 = Uu

ρ+1 = 1.
Theorem 13. Let d = gcd(ρ, ord(Q)) and u ord (Uρ+1). Then

(i) Qρ = U2
ρ+1.
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(ii) ord (Qρ) divides ord
(
U2

ρ+1

)
.

(iii) ord (Uρ+1) divides 2 ord(Q)/d.

(iv) d divides π and ord(Q)/d divides π.

Proof. (i) Since Uρ = 0 we have αρ+1 = Uρ+1α and βρ+1 = Uρ+1β. So, αρ = Uρ+1 and βρ = Uρ+1.
This implies that Qρ = (αβ)ρ = U2

ρ+1.

(ii) This follows immediately from (i).

(iii) We have
1 =

(
Qord(Q)

)ρ/d
= (Qρ)ord(Q)/d = U

2 ord(Q)/d
ρ+1 .

So, u divides 2 ord(Q)/d.

(iv) Since d divides ρ and π = ρu, d divides π. Also, Qρu = U2u
ρ+1 = 1. So, ord(Q) divides ρu.

Therefore, ord(Q)/d divides ρu/d. Since gcd(ρ/d, ord(Q)/d) = 1, ord(Q)/d divides u. This implies
that ord(Q)/d divides π.

Corollary 14. The period π of the Fibonacci sequence Fn+2 = Fn+1 + Fn is even. Moreover, if the
rank of appearance ρ is odd then 4 divides π.

Proof. For the Fibonacci sequence, Q = −1. So, gcd(ρ, ord(Q)) = gcd(ρ, 2). There are two cases
to consider. If gcd(ρ, 2) = 2 then ρ is even and it follows that π is even. If gcd(ρ, 2) = 1 then ρ is
odd, so (−1)ρ = −1. This implies that 2 divides ord

(
U2

ρ+1

)
. That is, 4 divides ord (Uρ+1) and we

conclude that 4 divides π.

Remark 2. If α ̸= β and α and β are in Zp then ord(α) and ord(β) divide p−1 so Up−1 = 0. If α ̸= β
and α and β are not in Zp then β = αp. Since Q = αβ = ααp = αp+1 = −QUp + Up+1α we have
Up = −1 and Up+1 = 0. If Up−1 = Up+1 = 0 then the identity 0 = Up+1 = PUp − QUp−1 = PUp

implies that PUp = 0. If Up = 0 then by working backward we get Up−2 = Up−3 = · · · = U1 = 0.
This gives a contradiction since U1 = 1. Therefore, P = 0. In this case, Un = 0 for n even,
Un = (−Q)n for n odd, n > 1, the rank of appearance is 2 and the period π satisfies π = 2 ord(Q).
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Abstract
Is theism compatible with a Platonist view of mathematical objects? Asserting that both are
true leads to both philosophical and theological problems. In this paper we introduce several of
these problems and discuss three philosophical models which attempt to affirm the existence of
both God and mathematical objects.

1 Introduction

Does God exist? Less provocatively, do numbers exist? Any definite (i.e., not agnostic) position
on these two questions will fit somewhere under the umbrella of one of Einar Bøhn’s four cate-
gories: Atheistic Nominalism, Atheistic Platonism, Theistic Nominalism, and Theistic Platonism.1
Atheism and Theism are the views that God does not or does exist (respectively), and Nominalism
and Platonism are the views that abstract objects do not or do exist,2 (respectively) [2]. In this
paper, I will not attempt to survey these four positions or to support any one of them; rather, I
have outlined these four broad positions in order to help frame our discussion here as exploring
the coherence of a particular position that fits under the umbrella of Theistic Platonism: the be-
lief in both God and a branch of Platonism called Mathematical Platonism. Can both God and
mathematical objects exist simultaneously?

What are numbers, and what are they like? What about geometric objects such as points, lines,
and shapes? How about algebraic objects like groups and isomorphisms, or topological objects such

1This term of Bøhn’s, Theistic Platonism, is very general and encompasses all views that affirm theism and
Platonism. The reader should be careful to distinguish this from “Platonic Theism” in section 8 which is, confusingly,
one specific type of Theistic Platonism. Hopefully the reader will find it helpful that I will not use the term “Theistic
Platonism” any more in this paper after this paragraph.

2One could argue that this is not truly a binary choice. In [1], Balaguer outlines a spectrum of four positions:
Platonism, which claims that abstract objects exist outside of space-time and independently of our minds; immanent
realism, which affirms that abstract objects exist, but which locates them in the physical world; conceptualism, which
holds that abstract objects do exist but only as ideas in our minds; and nominalism, which denies that abstract
objects exist. For example, under this schema, Bridges holds to conceptualism, staking out a position in which
abstract objects are “objects abstracted by the intellect and [which] have the properties they do as a result of the
way the intellect grasps its objects” [3, p. 278].

On the other hand, Craig argues that Bridges’s perspective is not a middle ground but just another type of
nominalism [4]. Indeed, depending on how one answers the thorny question of how abstract objects should be defined
(which we will briefly address in Section 3) immanent realism and conceptualism can both be construed as actually
denying the existence of abstract objects. From this perspective, immanent realism and conceptualism are under the
umbrella of nominalism, and so the choice between Platonism and nominalism would be binary after all. In this paper
we will not solve this problem of whether Platonism and nominalism are points on a spectrum or a binary choice.
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as simplicial complexes and metric spaces? By these questions, I do not mean to ask what it is
that the various fields of mathematics teach. We will not be exploring the content of mathematics.
Rather, my questions have an ontological flavor to them.

Following our intuition, it seems that we did not make these mathematical objects up; it feels like
when we are learning our numbers as children or learning algebra and geometry later on, we are
not creating it all in our heads but rather we are learning about something that is already there.
This mirrors the feelings that a mathematician has when she discovers some brand new math—it
feels like discovery, not like creation. Still following our intuition, it seems like it does not matter
what I think about the Pythagorean Theorem; it just is whatever it is, independent of my thoughts,
the various symbols used to represent it, my culture, or the first culture that discovered it. Are
numbers, shapes, and equations such as 2 + 2 = 4 never brought into being by anybody? At this
point, a Christian might pause to wonder whether God himself, the creator of all things, brought
(or even could bring) numbers into existence.

What else can we say while we are following our nose about the nature of mathematical objects?
It seems that mathematical objects are not located anywhere in particular.3 Further, it is hard
to see how they could ever change or how they could be affected by something concrete or affect
something else. Stewart Shapiro comically writes, “The scientific literature contains no reference to
the location of numbers or to their causal efficacy in natural phenomenon or to how one could go
about creating or destroying a number. There is no mention of experiments to detect the presence
of numbers or determine their mathematical properties. Such talk would be patently absurd” [20,
p. 27]. Again, a Christian might pause. I can see how I myself have no power to affect mathematical
objects, but is not God all powerful and sovereign over everything? If so, how can it be that God
is all powerful but that at the same time, math is unchangeable?

It seems that for most people who have interacted much with mathematics4 but not thought deeply
about related philosophical problems, our default unexamined intuition would seem to support the
belief that numbers and other mathematical objects are real. It is what feels most natural. Kelsey
Houston-Edwards says the idea that mathematical objects are real in some deep sense “aligns with
the way people feel while doing math. It positions mathematicians as investigators of sorts. They’re
like explorers in a sea of numbers and shapes and ideas. It’s how actual mathematicians talk” [11].
That is, our intuition seems to support the idea that numbers, shapes, and so on, are real things.
Obviously we must be careful; our unexamined default intuition would also seem to support a flat
earth and a geocentric solar system, which is a good reminder that intuition in and of itself is not
sufficient justification to hold any position.

We will call a belief in the reality of numbers and other mathematical objects Mathematical Pla-
tonism. To be more specific, Mathematical Platonism is the belief that mathematical objects are
eternal and necessary objects which cannot affect or be affected by anything. They have no loca-
tion in space-time, and their existence is independent of minds. (We will go into more detail about
Mathematical Platonism in Section 3.) Mathematical Platonism is not so much a distinct philos-
ophy from Platonism as it is a way Platonism is applied to mathematical objects. Mathematical
Platonism is what Platonists might believe about mathematics. Therefore Mathematical Platonism
can fit within the Theistic Platonism frame (although to be clear, Mathematical Platonism is silent

3I am talking about for example, the number 2 itself (if such a thing exists), not the ink on this page which denotes
it.

4I am not only referring to people who have earned a degree in mathematics. This intuition would be present in
most children in an elementary school math class.
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about theism).

Even though for many, Mathematical Platonism is a default unexamined perspective, many philoso-
phers have taken issue with this view for various reasons. There are many philosophical problems
that arise alongside Mathematical Platonism, and many other ontologies are held up as a way to
resolve some of these tensions. As alluded to above, some, but not all, of these problems arise from
tensions between Christianity and Mathematical Platonism. Other problems arise from within
Mathematical Platonism itself. In this paper we will explore questions about the compatibility
of Christianity and Mathematical Platonism, focusing on this overall question: Are the inherent
tensions between Christianity and Mathematical Platonism reconcilable, or does logic dictate that
we must reject one to hold the other?

In sections 2 and 3, we will discuss several relevant propositions about the God of Christianity
and about Mathematical Platonism, respectively. Section 5 is a discussion of the contradictions
that seem to arise as a result of holding both Christianity and Mathematical Platonism. Following
that, we discuss three ways Christian philosophers have attempted to resolve these difficulties, ways
which we will categorize based on two binary variables: 1) created or uncreated and 2) dependent
on God or independent from God. The first variable is straightforward: does a particular model
construe mathematical objects as created by God or not? As for the second variable, regardless
of whether mathematical objects are created by God, are they considered independent from him
or not? The first model we consider is Theistic Activism, in section 6. Under Theistic Activism,
mathematical objects are held to be both created by and dependent on God. Then in section 7 we
consider Divine Conceptualism, in which mathematical objects are taken to be uncreated but still
dependent on God. Finally, a model is presented in section 8 called Theistic Platonism in which
mathematical objects are uncreated and independent from God.5

2 Propositions About God

As a belief system, Christianity encompasses a plethora of propositions about God, humanity, the
world, ethics, history, the purpose and meaning of life, and many other things. However, in this
paper, when I talk about Christianity or Christian theism, I mean something much narrower: some
very specific propositions about the God of classical Christianity that are relevant to the discussion
of God and mathematical objects. We will be particularly interested in the Christian vision of God
as a sovereign and self-existing creator of all things.6 I do not mean to imply that these few ideas
compose the whole of Christian Theism, nor its core or essence. The three statements below are all
specifically about God, but I do not in any way argue that these are the definition of God or the
core of his being, nor even the most important points about him. They are simply three statements
implied by Christianity which have particular relevance to the discussion of God and mathematical
objects.

What did God create, and how did he create it?

• “In the beginning, God created the heavens and the earth. . . . And God said, ‘Let there be
light,’ and there was light” (Genesis 1:1, 3).

5It is contradictory to suppose that mathematical objects could be simultaneously created by God and independent
of him, for “being created by X” is a type of “dependence on X,” so there is no created-and-independent model for
us to explore.

6In fact, Islam, Judaism, and some other monotheistic belief systems would hold similar views about God as a
sovereign, self-existent creator.
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• “In the beginning was the Word, and the Word was with God, and the Word was God. He
was in the beginning with God. All things were made through him, and without him was not
any thing made that was made” (John 1:1-3).

• “[God’s son] is the image of the invisible God, the firstborn of all creation. For by him all
things were created, in heaven and on earth, visible and invisible, whether thrones or domin-
ions or rulers or authorities—all things were created through him and for him” (Colossians
1:15-16).

When we think about the idea of creating or making something, images of a construction site or
an art studio come to mind in which the beauty, order, and structure of a building or painting
are made to come together by its creator out of the chaos of raw materials: beams, bricks, wood,
metal, ceramic, paint, and canvas. Christians believe that in creating, we are acting as image
bearers, for God is the ultimate creator of the universe. God’s original creation of the universe
though is substantially different from any act of creation we might perform, for God created the
world ex nihilo, out of nothing. The builder gathers materials (concrete, wood, etc.) and arranges
them together in just the right way to form a house, but God created the world out of nothing.
“By creation we mean the work of God in bringing into being, without the use of any preexisting
materials, everything that is” [7, p. 392].

Regarding what God created, consider the fifth question of the New City Catechism: “What else
did God create? God created all things by his powerful Word, and all his creation was very good.
Everything flourished under his loving rule” [10]. How should Christians interpret the words “all
things” and “everything” in this catechism and in the passages above? The Genesis passage refers
to God’s creation of the “heavens and the earth,” and the two New Testament passages refer to “all
things.” Wayne Grudem writes that we should take these phrases to mean “the entire universe”
and “all the parts of the universe, both visible and invisible things” [9, p. 124-5]. Certainly Grudem
is arguing that God created a huge host of things, but it is not clear whether he means to include
abstract objects. Millard Erickson is a little more all-encompassing in his assessment, saying that
God created “everything that is” [7, p. 392]. He writes, “God did not create merely a certain
part of reality, with the remainder attributable to some other origin; he has made all of reality,”
[7, p. 397] which is a very strong statement and would most naturally be interpreted as including
abstract objects. However, he later writes that “creation in the proper sense refers to bringing into
existence all of physical reality as well as all spiritual beings other than God himself” [7, p. 399],
which brings into question whether he has abstract objects in view at all, for it is generally agreed
that such objects are not part of physical reality, nor are they considered spiritual beings. In view
of this, we will encapsulate the biblical doctrine of God as creator in the statement that follows,
while for the present leaving ambiguous the meaning of the term “everything.” We will highlight
several statements in this way throughout the paper. Note that for convenience, the complete list
of these statements is found in the appendix on page 268.

Statement (gc). Everything (besides God himself) is created by God.

Next, Christians hold that God is existentially independent of anything and everything else; he
is self-existent. This is what we will mean when we say that God exists a se, or that he has the
property of aseity. In describing this doctrine, William Lane Craig points out that it is closely tied
to the doctrine of creation, for if God is the creator, the source of everything whatsoever besides
himself, then everything depends on him; there is nothing left for him to depend on [5]. The
argument is that since everything depends on God, he cannot depend on anything. This gives us
the following statement.
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Statement (ga). God exists a se.

Christianity also teaches that God is the omnipotent, sovereign king over all creation. Erickson
writes that God “is free to do whatever he wills” [7, p. 928], and Grudem writes, “there are no limits
on God’s power to do what he decides to do” [9, p. 98]. This understanding of God’s power seems
to imply that God has the power to change or destroy a thing if he chooses. He could make the
world spin the other direction or make an apple tree bear grapes. Indeed, we have seen him calm
the storm and heal the blind. Our question here is whether God’s power extends over mathematical
objects, as we will explore in later sections.

Statement (go). God is omnipotent.

I have intentionally left these statements somewhat ambiguous, for as we shall see, how these
doctrines are interpreted with respect to mathematical objects varies by philosopher.

3 Mathematical Platonism

Before we dive into describing Mathematical Platonism, I should point out that while the philo-
sophical stances of (regular) Platonism and Mathematical Platonism are quite related (as one would
expect from their names), they are not identical. The term “Platonism” itself can refer to Plato’s
philosophy of a realm of ideal forms serving as models used by the demiurge as he created the world
[12]. Modern metaphysical Platonism is a bit different: it is the belief that there exist abstract
objects such as properties, propositions, universals, relations, and the like [1]. This latter view is
the version of Platonism to which we are referring. As we discussed in section 1, Mathematical
Platonism is to Platonism as economic conservatism is to conservatism. Economic conservatism is
a conservative outlook on economics, but an economic conservative need not be conservative about
everything. For example, Bill Clinton was considered to be economically conservative and socially
liberal. Similarly, Mathematical Platonism is a Platonistic outlook on mathematical objects. Theo-
retically, one could be a Mathematical Platonist but not hold a Platonistic view on, say, universals.
The focus of this paper is Mathematical Platonism, and the focus of Mathematical Platonism is on
mathematical objects. Mathematical objects include such objects as numbers, sets, shapes, groups,
functions, operations, fields, topological spaces, vectors, matrices, manifolds, etc.7

In The Stanford Encyclopedia of Philosophy, Øystein Linnebo defines Mathematical Platonism as
the view that mathematical objects exist, that they are abstract, and that they are independent of
intelligent minds [13]. Shapiro refers to this view as realism in ontology and observes that “among
ontological realists, the most common view is that mathematical objects are acausal, eternal, inde-
structible, and not part of space-time” [20, p. 27]. As we did in section 2 about God, we are going
to formalize these ideas into discrete statements about mathematical objects, which we will be able
to focus on and refer to throughout the rest of the paper.8 As a reminder, all of these statements
are summarized for convenience in the appendix on page 268.

7A reader need not be a mathematician to understand this paper, nor need she have an understanding of this list
of mathematical objects. The basic concepts of number and shape will suffice.

8It is worth reflecting on the fact that while gc, ga, and go are derived from theology which is derived from
scripture (and tradition and reason), the statements we will formalize about mathematical objects will be derived
largely from our intuition. That is to say, Mathematical Platonism seems to be the natural perspective to hold about
mathematical objects. Again, this is only an observation about Mathematical Platonism, not an argument for its
truth. Our goal here is not to determine whether Mathematical Platonism itself is true or false anyway, but rather
to decide whether it is true or false that Mathematical Platonism is compatible with gc, ga, and go.
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The idea of necessity is the opposite of contingency. A contingent object may have existed or not
existed, depending on the circumstances. For example, the beet and radish plants in the garden in
front of me would not exist had my wife chosen to plant flowers instead. In contrast, a necessary
object could not but exist, no matter what. As a relatively non-controversial example (among
Christians of course), God is a necessary object; there is no possible world in which he does not
exist. Nothing can happen to alter his existence. Less clear is whether a mathematical object such
as the number 2 is necessary. Starting with our intuition again, it does appear to be the case that
the number 2 could not fail to exist. No matter what my wife planted in the garden, how could it
possibly not be the case that a pair of them would correspond to the number 2? How could there
be a world in which one discrete unit and another, together, would not be accurately described
by the number 2? Numbers strike us as things that have to exist, and further, they have to exist
just as they are. We cannot conceive of, say, a different number system. Of course, we could use
different symbols or a different radix9 to denote numbers, but the underlying numbers themselves
seem to just be there, existing, no matter how we refer to them. This apparent necessity of numbers
and other mathematical objects gives us the following statement.

Statement (mn). Mathematical objects are necessary.

In Shapiro’s quote above, we see that one commonly (but not universally) accepted description of
abstract objects (and thus also of mathematical objects) is that they are acausal or causally inert.
An object’s being causally inert means that it does “not have the potential to enter into an ordinary
causal chain” [2, p. 5]. As Peter van Inwagen colorfully writes, abstract objects’ existence “has
nothing to do with causation. One can no more cause a purely qualitative property or proposition
to exist than one can extract a cube root with a forceps. Causation is simply irrelevant to the
being (and the intrinsic properties) of abstract objects. And, if abstract objects and their intrinsic
features cannot be effects, neither can they be causes. An abstract object can be neither of the
terms in any causal relation” [22]. Van Inwagen is saying that a mathematical object such as a circle
cannot possibly be caused to exist or otherwise affected by something else, nor can the circle cause
anything else; it cannot cause something to exist, to change, or to stop existing. Mathematical
objects simply have no effects. We will formalize this idea with the following statement.

Statement (mci). Mathematical objects are causally inert: they cannot participate in causal
chains as causes or effects.

As noted previously, Mathematical Platonism asserts that mathematical objects are independent
of intelligent minds. For one thing, this means that a mathematical object would exist regardless
of whether any mind thinks of it. It is not brought into being by or in any way affected by the will,
decision, desire, or action of any mind. As an example, my car is not independent of intelligent
minds because although there are times when nobody (at least no human) is thinking of it, engineers
decided to design it and factory managers decided to build it. It would not exist without the actions
of some (very intelligent) people’s minds. Similarly, Harry Potter is not independent of intelligent
minds because he was thought up by J. K. Rowling. On the other hand, something like the
number 2 is independent of intelligent minds, at least according to Mathematical Platonism (and
our intuition would seem to agree). Since it seems that the number 2 existed before humanity, it
is hard to see how 2 could be a product of a mind. It certainly seems like neither you nor I could

9The radix is the number of unique digits (including 0) used to name the natural numbers. We generally use
a decimal (or base 10) system, for we use ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Another somewhat familiar system is
binary, the two-digit system ubiquitous in computer science which uses only 0’s and 1’s. The point, though, is that
even though the number we call “three” in English can be denoted by the decimal number 3 or the binary number
10 or the Roman numeral III, each of these representations has the same referent.
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alter or affect 2 in any way.

Statement (miim). The existence of Mathematical objects is independent of intelligent minds.

Mathematical Platonism also claims that mathematical objects are eternal. Now the word eternal
can be interpreted in at least three ways. Imagining a timeline charting an object’s existence, the
object may have a certain beginning point but continue existing into the future without end,10 or it
may have existed indefinitely into the past with no beginning point but have a definite endpoint,11

or it may exist indefinitely into the past and into the future, as in the Christian conception of God.
This last option is what I will mean when I talk about objects being eternal. There is no point in
time at which an eternal object does not exist.

Statement (me). Mathematical objects are eternal.

Another commonly held (but not universally held, cf. [5]) view is that abstract objects, and thus also
mathematical objects, are non-spatiotemporal; they do not occupy space-time. The time element of
this idea we have already begun to discuss above by characterizing mathematical objects as eternal,
but this idea goes a bit further by implying that not only do mathematical objects exist at every
point in time, but they cannot change, for if they were to change, there would be two points in
time at which a mathematical object would not be identical to itself, as a child is distinct from his
adult self. However, being non-spatiotemporal means that besides merely existing at every point
of time, mathematical objects have no other relation to time. The empty set and the hexagon and
the number 2 do not and cannot, say, evolve over the centuries.12

Next there is the space aspect of space-time. To say that mathematical objects are non-spatiotemporal
means that one cannot find geometric lines lurking in Libya. There is no telescope or microscope
that will reveal the location of the number 2. An Aristotelian perspective would hold abstract
objects to exist in rebus, in things. So the number 2 would be located in the space where a bipedal
animal exists and in a pair of chopsticks. However Platonist views generally reject this perspective.

Statement (mnst). Mathematical objects are non-spatiotemporal.

4 Abstract Objects

In the next section, we will discuss apparent contradictions between Mathematical Platonism
(specifically mn, me, mci, mnst, and miim) and the existence of God (specifically gc, ga, and go),
but first, since mathematical objects are usually considered to be examples of abstract objects, it
is worth thinking briefly about abstract objects in general. Notoriously difficult to define, abstract
objects have no single agreed-upon definition. Amusingly, Welty describes the abstract/concrete
distinction to be “in disarray, ontologically speaking” [8, 94]. Gideon Rosen claims that the most
widely accepted definition of an abstract object is that it is non-spatiotemporal and causally inef-
ficacious [19]. However, none of the other sources I read used that precise definition, some refuted
it, and others did not even try to define abstract objects. For example, Shapiro defines a concrete
object as one that is “ ‘physical’ or ‘spatio-temporal,’ ” so an abstract object would be defined as

10For example, Christians believe that the human soul comes into existence at conception but that if one is a
Christian, the soul has no end. (Whether or not the soul of a nonbeliever has an endpoint in time is the subject of
debate between those who hold to “Eternal Conscious Torment” and those who hold to “Annihilationism” which are
completely outside the scope of this paper.)

11One might imagine a deity who eventually dies.
12Of course, this is not to say that humanity’s understanding of mathematics does not change and evolve over time.
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a non-spatiotemporal object, but he says nothing about causal efficacy [20, p. 162]. In contrast,
Craig uses causal impotence exclusively as the dividing line between concrete and abstract objects,
and he explicitly rejects the idea that abstract objects are non-spatiotemporal, proffering examples
such as the equator, the center of mass of the universe, and God himself [5]. The causal impotence
of an object X affirms that X cannot affect anything, but not that X cannot itself be affected by
anything. (This is why Craig uses the term causal “impotence” rather than something like causal
“intertness” or causal “inaptness”.) Then there is Bøhn, who defines abstract objects by two crite-
ria, first that they are causally inapt (they cannot be causes or effects, unlike Craig’s concept), and
second, that they do not obey the law of the excluded middle with respect to properties,13 which
was a unique idea among my sources [2]. To muddy the waters further, Bøhn suggests that perhaps
the abstract/concrete divide is not even a partition of the set of all objects but rather a spectrum
along which each object can be placed. For example, he might suggest the following objects are
listed in order of decreasing abstractness: the empty set, the set containing the number 1, the set
containing George Washington, George Washington himself.

In light of the fuzzy, ill-defined line between concrete and abstract objects, many philosophers do
not even attempt to carefully define the distinction. “Usually, discussion of the reality of abstract
objects is able to proceed on the basis of shared examples without a clear delineation between
concrete and abstract” [6, p. 8] (cf. [8, 14, 21]). The idea is that if you give a philosopher a list of
objects, she could fairly easily sort them into two categories: abstract and concrete. Van Inwagen
writes that “this procedure will yield pretty consistent results,” though he acknowledges that some
objects will be difficult to categorize [21, p. 109]. From van Inwagen’s (and others’) perspective, we
all more or less know the difference between concrete and abstract objects even though we cannot
precisely define it. While this may be largely true, the lack of agreement about the concrete/abstract
distinction still leads to confusion. For example, Chris Menzel ([14]) (and most philosophers) would
categorize numbers as abstract objects, but Bøhn and Craig, using different definitions, would say
Menzel’s conception of numbers as ideas in the mind of God (see section 7) implies that numbers
are concrete objects instead. I find this kind of confusion unhelpful.

As our interest here is not in abstract objects generally but in mathematical objects, I will attempt
to avoid the difficulties posed by the ambiguity of the nature and definition of abstract objects by
focusing solely on mathematical objects. This will allow us not to get hung up on the definition
of abstract objects, whether abstract objects exist, or whether God’s thoughts are abstract or
concrete. Most people believe that if abstract objects exist, then mathematical objects are a
prototypical subcategory of abstract objects. It follows that whatever my sources write about
abstract objects will usually apply to mathematical objects, so whenever a quote in this paper
refers to abstract objects, the reader can assume, unless otherwise specified, the quote applies to
mathematical objects as well.

13This is a concept I did not find in any of my other sources. The idea is that for any given property (say, the
property of redness) a concrete object either has the property or it does not; it obeys the Law of the Excluded Middle
with respect to properties. On the other hand, for an abstract object, there is a third or “middle” option: something
like “does not apply.” The abstract object 2 cannot be said to have the property of redness or to not have it; rather,
redness just does not apply to 2. Thus, 2 does not obey the law of the excluded middle with respect to properties. I do
not find an appeal to the law of the excluded middle with respect for properties helpful (or perhaps I misunderstand
Bøhn’s meaning) because for example, I think we can positively say that the number 2 is not red. Further, it does
not seem that concrete objects necessarily follow the law of the excluded middle with respect to properties either
because they are able to partially or unevenly have properties. Does my house have the property of being green?
Well, the window shudders and a few of the interior walls are painted various shades of green, but most of the house
is not green. It is not clear that my house should be considered to have the property of greenness. Does it have the
property of being large? Well, yes and no; it is larger than a cat but smaller than a planet.
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I am going to take a page out of van Inwagen’s book and decline to define mathematical objects,
instead relying on a common understanding of what they are. Paradigmatic examples of objects
we could classify as mathematical objects are sets, numbers, shapes, and propositions about these
objects, such as “2 + 2 = 4” or “There are infinitely many prime numbers.”

5 The Apparent Contradictions

In this section we will outline several philosophical problems that arise in simultaneously positing
the existence of the Christian God and the existence of mathematical objects. With a few excep-
tions, we will not attempt to resolve these problems in this section, but in the following sections,
we will see how specific philosophical models address them. It is worth pointing out for the sake
of completeness that while there are philosophical quandaries at the intersection of Christianity
and Mathematical Platonism, other problems arise in holding both naturalism and Mathematical
Platonism together. For example there is the access problem: “How can humans, as physical organ-
isms inhabiting a physical universe, have intuitive knowledge of a causally inert realm of abstract
objects?” [20, p. 221]. It is arguably easier for Christians to answer this question with God as an
explanatory item in our worldview. For example, one might argue if mathematical objects exist in
the mind of God as Theistic Activism (section 6) and Divine Conceptualism (section 7) posit, one
can appeal to the Imago Dei. Menzel writes, “we are like God in certain important respect such as
consciousness and rationality” [14]. One could then take a position that in God’s creating us in his
image, he intentionally instilled mathematical perception in our minds. Much more would need to
be said in order to construct a proper argument in this direction. The point is simply that while
this paper focuses on philosophical problems between Christianity and Mathematical Platonism,
there are also serious problems between naturalism and Mathematical Platonism.

5.1 The Eternality Problem

Statement me implies that mathematical objects do not have a beginning point. How then could
there be any moment at which they were created? It seems that me implies there are objects which
are uncreated. But recall that gc claims that all things are created by God. Thus some objects
are uncreated, and all things are created. As van Inwagen points out, the words thing and object
are generally synonymous in these discussions14 [21]. Therefore while gc states that God created
every thing, me seems to imply that the things which are mathematical objects are uncreated since
they have no beginning point. This is the eternality problem, and we will write it out explicitly as
a contradiction.

Contradiction (eternality). Mathematical objects have no beginning point, and they began when
God created them.

5.2 The Causal Problem

Next, it seems clear that to create something is one way of causing that thing. As van Inwagen
writes, “Creation is, in the broadest sense of the word, a causal relation” [22, p. 5]. It follows
that if gc is true then God caused mathematical objects to exist. Explicitly, God is the cause, and

14In fact, he states that the words thing, item, entity, and object are synonymous [21]. Elsewhere, he more
specifically defines an ‘object’ to be “anything that can be the value of a variable, anything that can be referred to
by the use of a pronoun” [22], and we are treating the term the same way in this paper. Thus persons—including
God—are objects, though in these cases, it feels more respectful to refer to them by the synonym entity or even to
just stick with person, understanding that all persons are objects (though the converse is of course false).
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mathematical objects are the effect. This of course contradicts mci, which claims that mathematical
objects cannot participate in causal chains. Thus we have the causal problem.

Contradiction (causal). Mathematical objects are caused, and mathematical objects are un-
caused.

5.3 The Mind-Independence Problem

The next problem is similar to the last: If the existence of mathematical objects is independent
of intelligent minds (miim), then does not this imply that the existence of mathematical objects is
independent of God’s mind? But how could this be so if God created them (gc)? After all, the
Christian vision of God is not of some impersonal, mindless force (like the Force in Star Wars),
but of a thinking person. Yet the statement miim would seem to imply that no intelligent mind—
including God’s—is involved in the creation or existence of mathematical objects. We will call this
the Mind-Independence Problem.

Contradiction (mind-independence). The existence of mathematical objects is due to God’s
mind, and the existence of mathematical objects is due to nobody’s mind.

5.4 The Freedom and Sovereignty Problem

Given mn, mathematical objects must exist. They could not have not existed. Mathematical
objects’ necessity seems to imply that if they were created by God (gc), God had no choice but
to create them. Their necessity seems also to imply that God has no power to change or destroy
mathematical objects (e.g., to make the set N of natural numbers a finite set, to abolish circles, or
to change the proposition “2 + 2 = 4” from true to false). Yet if God was constrained to create
mathematical objects, and he is unable to edit them, so to speak, does not this compromise both
his freedom and his sovereignty? This is the Freedom and Sovereignty Problem.

Contradiction (freedom). God has creative power over everything, and God does not have cre-
ative power over mathematical objects.

5.5 The Uniqueness Problem

If miim and mn are true, it seems to follow that mathematical objects are self-existent, not relying on
anyone or anything else for their existence. In other words, it seems that mathematical objects have
the property of aseity. Furthermore, Craig brings up a perspective held by the early church Fathers,
which is that eternality implies deity [5]. Thus if me is true, this would imply that mathematical
objects are divine, so mathematical objects are divine, a se objects alongside God. Christian
theology generally considers God to be the only entity which is the ultimate transcendent reality,
the source of all things. This gives us a picture of mathematical objects as a sort of competitor
for God’s primacy. (This is Craig’s deepest concern about Mathematical Platonism, leading him
to reject it.)

Contradiction (uniqueness). God is the unique transcendent reality existing a se, but also, math-
ematical objects have a real, transcendent, a se existence.
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5.6 The Dependency Problem

According to ga, God cannot rely or depend upon anything else, including any mathematical
object. Yet consider the doctrine of the Trinity. Though the doctrine is mysterious, it is clear at
least that it relies on the numbers 1 and 3 and on a notion of perhaps not equality but at least some
kind of equivalence relation.15 Since God is understood to be a necessary being, he could not have
been otherwise, implying that he does not have control over how he is, over his properties. For
example, he cannot choose not to be a Trinity of three persons. This being the case, one can argue
that there is a sense in which God’s existence fundamentally relies on at least some mathematical
objects.16 Thus we reach another contradiction.

Contradiction (dependency). God depends on nothing, and he depends on (at least some) math-
ematical objects.

5.7 Two Quick Solutions

The eternality problem and the causal problem are actually not difficult to solve. The solution
to the eternality problem is to adjust our notion of creation. Up to now, whenever we have used
the word creation, we have essentially been implying creation at a point in time, but this is not
the only way to understand the term. According to Hebrews 1:3, “[God’s Son] is the radiance of
the glory of God and the exact imprint of his nature, and he upholds the universe by the word
of his power . . . .” About the same Son, Colossians 1:17 says “And he is before all things, and in
him all things hold together.” (The emphasis is mine in both verses.) Christians are not deists;
we do not believe that when God initially created the world “in the beginning,” he infused it with
ontological momentum,17 so that it could go on existing on its own, as a clockmaker might create
a pocket watch, wind, start, and leave it alone to tick away independently. Rather, as the verses
suggest, Christians hold that everything is existentially dependent from moment to moment on the
creative power of God. If God were to withdraw his sustaining hand, the universe would cease to
exist. Stephen Williams writes, “The notion of providence encapsulates the conviction that God
sustains the world that he has created and directs it to its appointed destiny” [24, p. 711]. Thus
while Christians do hold that there is a beginning point to our concrete universe when God initially
brought everything into existence, we do not view his creative work in general as a single finished
event but as a continuous, ongoing act. Menzel refers to this as continuous creation [14].

With this enhanced understanding of creation in mind, we begin to see how the eternality problem
may be solved. To say that mathematical objects are created is only to say that at every point
in time, God creates or sustains or upholds mathematical objects, not necessarily that they have
a beginning. Therefore the eternality problem is easily dissolved without compromising either
theology or Mathematical Platonism.

The causal problem is not too difficult to solve either, provided we allow a slight adjustment of
mci. As noted earlier, there is not general agreement about what abstract objects and mathematical

15An equivalence relation is a relation ≈ which is reflexive (for all objects X, it is always true that X ≈ X),
symmetric (for all objects X and Y , if X ≈ Y then Y ≈ X, and transitive (refer to footnote 21 for the definition
of transitive). We evoke equivalence relations here because there is some sort of equivalence relation between the
members of the Trinity. Again, the three are not equal to each other, but all of them are in a mysterious way, one
essence, one God.

16This case is often made in the more general context of abstract objects, where it is argued that God depends on
his properties (which are abstract objects), such as omniscience, wisdom, aseity, and existence. For example, see [17]
and Gould and Davis’s chapter in [8].

17I picked up the helpful phrase “ontological momentum” from [14].
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objects are. In particular, not everyone considers causality to be fundamentally related to their
ontology. Of those who do, some, like Craig, take issue with mci. Craig writes, abstract objects
are “not related to other objects as causes to effects” [5, p. 6]. Notice that this concept is subtly
different than mci: A mathematical object can participate in a causal chain, but if it does, it must
be the last link in the chain, so to speak. That is, mathematical objects may be caused, but they
themselves are unable to cause anything else. Overall it would not be overly controversial to replace
mci with the following statement.

Statement (mci-2). Mathematical objects are causally impotent; they cannot cause or affect
anything.

Replacing mci with mci-2 in our Mathematical Platonism schema quickly and cleanly dissolves the
causal problem.

6 Created and Dependent: Theistic Activism

The first philosophical model we consider which attempts to iron out the apparent discrepancies
between Christianity and Mathematical Platonism is Theistic Activism. According to Thomas V.
Morris, this model demonstrates the “extraordinary compatibility of core elements of these two
profound metaphysical visions” [15]. The first point is the assertion that abstract objects—and
therefore also mathematical objects—are created.18 Morris and Menzel write, “God is absolute
creator of necessary as well as contingent reality, and. . . literally all things do depend on him” [16].
God is not only the creator of objects that may or may not exist, such as cats, trees, stars, and
you and me; he is further the creator of everything that exists necessarily, including mathematical
objects.19 How is God responsible for this entire “framework of reality,” as they call it? It is a
product of God’s creative intellective activity. God’s mind is continually, eternally creating and
sustaining the whole host of mathematical objects, and they are in a sense located in his mind.

It is not clear whether mathematical objects are considered to be merely products of God’s thinking
or God’s very thoughts themselves; perhaps different theistic activists would take different positions.
For example in describing this model, Gould directly identifies abstract objects with divine thoughts
and concepts [8, p. 8], while in contrast, Craig describes this model as holding abstract objects to
be “caused by God’s intellective activity” [5, p. 55]. Either way, whether mathematical objects are
God’s thoughts and concepts or only caused by God’s thoughts and concepts, Theistic Activism
affirms that mathematical objects are in some sense located in God’s mind and dependent on him
for their existence.

The Theistic Activism model wholeheartedly affirms gc, although we will need to take another look
at ga and go below. As for statements about mathematical objects, Theistic Activism would affirm
mn, me, and mci-2. mnst is accepted as well, for mathematical objects are viewed as existing in
the mind of God, and God is generally understood to be non-spatiotemporal.

Theistic Activism would fundamentally reject miim, as mathematical objects are here seen to be
elements within the mind of God, so this model would opt instead for the following statement.

Statement (miim-2). The existence of mathematical objects is independent of all intelligent
minds except God’s.

18Thus Theistic Activism is also referred to as “Absolute Creation.”
19Morris and Menzel assert that God is not only responsible for necessarily existing objects, but also for necessary

truths [16].
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miim-2 still allows us to affirm our intuition that mathematical objects are independent of our
human minds. My thoughts have no bearing on a number or set, for example.

In my view, the slight modifications which the Theistic Activism model makes to Mathematical
Platonism are not so dramatic as to prevent us from viewing this model as affirming Mathematical
Platonism. However, a crucial question remains: does Theistic Activism succeed in resolving
the apparent contradictions between Christianity and Mathematical Platonism? The Eternality
Problem is easily solved as described in section 5. Likewise, the Mind-Independence Problem is
solved since miim has been replaced with miim-2. As for the causal problem, Theistic Activism
simply denies mci and adopts mci-2 instead, for as Gould and Davis explain, “the relation between
thought and thinker is most naturally understood as a productive relation: the thinking produces
his thoughts. Thus, it is natural to think abstracta are created” [8, p. 100].

What about the Freedom and Sovereignty Problem? Morris and Menzel affirm mn, writing that
“God’s creation of the framework of reality is both eternal and necessary—it never was, never will
be, and could not have been, other than it is” [16]. Does this imply that God is not free to not
create mathematical objects? In other words, is God constrained to create them? Their answer is
‘yes,’ but they point out that according to Theistic Activism, “the necessity of [God’s] creating the
framework is not imposed on him from without, but rather is a feature and result of the nature
of his own activity itself, which is a function of what he is.” Since mathematical objects are (or
are products of) God’s own thoughts and concepts, his necessary creation of them is an activity
flowing from his nature.

Theologians already agree that God is in a sense constrained to be himself, to act consistently with
his own nature. For instance, he cannot sin or fail to be omnipotent or omniscient. Erickson writes
that God “is not bound by anything external to himself. His only limitations are those of his own
nature and the choices he has made” [7, p. 401]. Let us formalize this idea, as it will be convenient
to refer to later too.

Statement (The Nature Principle). God always and exclusively acts in ways consistent with his
own nature.

The point here is that by the Nature Principle, God necessarily acts consistently with his nature to
create the framework of reality (including mathematical objects) in exactly the form it exists; he
could not make it otherwise without negating himself, without denying his own nature. Therefore,
no, God is not free to not create mathematical objects, but this is only because of the already
acceptable proposition that he is not free to go against his nature.

This has addressed the freedom portion of the Freedom and Sovereignty Problem, but what about
the sovereignty concern? Morris writes, “theists can acknowledge the standard Platonist view that
God is not in control of abstract objects or necessary truths, in the sense that he cannot annihilate
or alter them intrinsically, while at the [same] time maintaining that these things depend on God
for their existence and intrinsic characteristics” [15, p. 171]. Thus the theistic activist must alter
go as follows.

Statement (go-2). God is omnipotent in the sense that while all things concrete and abstract
depend on God for their being, nevertheless God does not have the power to alter some types of
things (including mathematical objects), whether by changing them or destroying them, or by not
having created them in the first place.
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An appeal to the Nature Principle would explain why this modification of go does not diminish
God’s sovereignty or power. Exercising his power to alter mathematical objects would go against
his logical, ordered character; moreover, it is against the framework of reality that he himself creates
and maintains.

Turning to the Uniqueness Problem, Morris and Menzel do not consider God to be the only tran-
scendent reality, but they describe him as “the source of absolutely everything there is;. . . he is in
the deepest sense possible the ground of all being” [16]. The Theistic Activism model holds that
God is not the only eternal and necessary being, yet it does not follow that God is one god among
many. God is still supreme over all things, including mathematical objects. After all, mathematical
objects only exist in God’s mind. He is the source and ground of every one of them. He is the
ultimate author of the framework of reality. The fact that mathematical objects are necessary and
eternal like God does not threaten God’s unique place as the king of the universe, supreme over
everything.

How does Theistic Activism address the Dependency Problem? First of all, since mathematical
objects are located in the mind of God, we can say that God does not depend for his existence
on anything external to himself. Saying that he depends only on his own thoughts or on his
own nature seems to take the teeth out the Dependency Problem; however new problems arise
from this solution. Notably, there is what often called the Bootstrapping Problem. If God creates
mathematical objects, and if God’s existence depends on the existence of at least some mathematical
objects (consider the number 3), then is he not creating what he depends on to exist? Another way
of stating the question is this: if God depends on mathematical objects, and mathematical objects
depend on God, then doesn’t it follow that God depends on himself? If so, this initially seems
incoherently circular, but Morris and Menzel argue that “there is no absurdity or unacceptable
circularity about this when properly understood,” and their justification hinges on an asymmetry
of dependence; they distinguish between how God depends on his nature and how his nature
depends on him. The dependence of God’s nature on God is a causal dependence relation; God
causes his nature by creating it. In contrast, God’s dependence on his nature is a logical dependence
relation. What does this mean? We will say that “A logically depends on B” if the statement “if
B exists, then A exists” is true. Consider the statement,

If God does not exist, then mathematical objects do not exist. (1)

Recall that the statement “if P then Q” is always true whenever P is false. As God does exist,
it follows that (1) is true. Recall also that any if-then statement is logically equivalent to its
contrapositive, and thus it is true that

If mathematical objects exist, then God exists. (2)

Therefore God logically depends on mathematical objects.20 While the relations of causal de-
pendence and logical dependence relations are individually transitive,21 they are not necessarily

20Interestingly, we can generalize this by replacing ‘God’ in this formulation by any necessarily existing object,
and replacing ‘mathematical objects’ with any object whatsoever, and we would conclude that the necessary object
logically depends on the other arbitrary object. I do not think this type of dependence is a very deep, existential
kind of dependence. In particular, it is not a causal or explanatory kind of dependence. It does not seem to me that
it diminishes a necessary object in any way to logically depend on something else. In particular I do not think this
kind of dependence compromises God’s aseity.

21To say that a relation ∼ is transitive is to say that if A ∼ B and B ∼ C, then A ∼ C. Familiar transitive
relations from mathematics include equality (=) and inequality (<, ≤, >, and ≥). Familiar transitive relations from
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transitive together. To illustrate this, consider a simpler example using the commonplace transi-
tive relations older than and taller than in statements (3) and (4) below.

“Abby is older than Brooke” (3)
“Brooke is taller than Carlos.” (4)

The conjunction of statements (3) and (4) does not give us any information about Abby’s age or
height relative to Carlos. Abby may be older than, younger than, or the same age as Carlos, and
likewise, she may be taller than, shorter than, or the same height as him. Next let us forget about
Carlos and suppose that

“Brooke is taller than Abby.” (5)

It would be silly to conclude that the conjunction of statements (3) and (5) implies that “Abby is
older than herself” or that “Abby is taller than herself.” The point of this illustration is that it is
illogical to appeal to transitivity to claim that that since God logically depends on his nature and
his nature causally depends on God, it therefore follows that God depends (logically or causally)
on himself. Thus Theistic Activism does not imply that God incoherently depends on himself or
creates himself, which would be philosophically problematic.

To summarize, the driving motivation behind this model seems to be to preserve the widest and
most natural understanding of the statement gc by locating mathematical objects in God’s mind.
Theistic Activism’s biggest problems lie with go, which is replaced by go-2. The model would
basically affirm ga, but since God is held to logically depend on some mathematical objects (which
are products of his own mental activity), proponents would clarify the statement as follows.

Statement (ga-2). God exists a se; he does not depend on anything external to himself for his
existence.

7 Uncreated and Dependent: Divine Conceptualism

Although this model differs from Theistic Activism on the question of whether mathematical ob-
jects are created, the differences are subtle. While Theistic Activism is wishy washy about whether
mathematical objects are God’s thoughts or are merely products of his thoughts, Divine Concep-
tualism takes a definite stand: mathematical objects (and abstract objects in general) are God’s
thoughts and beliefs.2223 Menzel argues that properties and relations are God’s concepts, and
propositions are his thoughts, and he specifically identifies numbers as properties of mathematical
sets [14]. Of sets, he argues, “they can be regarded as part of a collecting activity on God’s part”
[14, p. 81]. Similarly, Alvin Plantinga describes Divine Conceptualism as “a view popular among
medieval philosophers. . . : the view that abstract objects are really divine thoughts. More exactly,

everyday experience include “being the ancestor of” and “being inside of.” To illustrate, if Abby is Brooke’s ancestor
and Brooke is Carlos’s ancestor, then Abby is Carlos’s ancestor, and if an apple is inside of a backpack and that
backpack is inside of a car, then the apple must be inside of the car too. (Although, on the other hand, if Lucy is
inside of a wardrobe, and the wardrobe is inside of a house, it does not necessarily follow that Lucy is in the house. . . )

22In [22], van Inwagen argues that while it is clear enough how propositions (at least true ones) can be God’s
thoughts, it does not make sense to say that other abstract objects, such as numbers, can be God’s thoughts.

23This is another point at which it is advantageous that we are focusing on mathematical objects rather than
abstract objects: there is disagreement about whether God’s concepts and thoughts should be considered concrete
or abstract. Thus, Divine Conceptualism (and possibly Theistic Activism) may be advocating for the existence of
abstract objects in God’s mind, or from another perspective, as the rejection of the existence of abstract objects since
all of the objects usually considered abstract objects (e.g., properties, propositions, and mathematical objects) are
instead put in the category of God’s thoughts which are concrete objects (cf. Craig in [5] and Craig and Yandell in
[8, pp. 97, 100]).
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propositions are divine thoughts, properties divine concepts, and sets divine collections” [18].

Greg Welty writes that Divine Conceptualism (which he calls “Theistic Conceptual Realism”)
“holds that [abstract objects] are necessarily existing, uncreated divine ideas that are distinct from
God and dependent on God” [8, p. 81]. From this statement we see that first of all, this model
rejects gc, replacing it with the following statement.

Statement (gc-2). Everything concrete (besides God himself) is created by God.

While there are philosophical reasons for adopting gc-2 in place of gc, it brings up a theological
question: why is it valid for a Christian to reject gc? We will put off answering this question until
section 8 in which we discuss Platonic Theism, which replaces gc with gc-2 in the same way.

Welty’s quote above also shows that the Divine Conceptualism model upholds mn. That mathe-
matical objects are necessary entails that they are also eternal, so me is also upheld.

If Divine Conceptualism claims that mathematical objects depend on God but are not created by
him, does Divine Conceptualism affirm mci? Suppose I set a clock on a high shelf. The clock is then
depending on the shelf for its elevation and even for its continued existence, for if the shelf stops
supporting the clock, it will fall to the floor and break. We could argue that the shelf is causing the
clock to not fall. It seems that one could argue that if object x depends on object y, then x and y
are participating in a causal chain in which y is affecting x, and so x is not causally inert. Thus since
Divine Conceptualism holds mathematical objects to be dependent on God, mathematical objects
are not causally inert; they are caused by God. There is nothing about Divine Conceptualism that
would cause one to doubt that mathematical objects are causally impotent though, so therefore,
like the Theistic Activism model, the Divine Conceptualism model affirms mci-2 in place of mci.

The similarity between Theistic Activism and Divine Conceptualism allow us to piggyback on
many of the arguments made in section 6. For the same reasons described in that section, Divine
Conceptualism affirms ga-2, go-2, mnst, and miim-2, and the Divine Conceptualism model can
provide solutions to the problems outlined in section 5 in the same way as Theistic Activism.

8 Uncreated and Independent: Platonic Theism

I will call the next model Platonic Theism, following Gould [8]. Platonic theists such as van Inwagen
attempt to resolve the problems raised in section 5 by viewing mathematical objects as uncreated
and independent of God [22, 23]. This model preserves all five statements of Mathematical Pla-
tonism (mn, me, mci, mnst, and miim), but it requires some amount of curtailing of gc, ga, and
go.

Adherents of Platonic Theism believe miim is true and that it rules out gc; they hold mathematical
objects to be uncreated and consider the idea of creating or causing necessary, eternal objects to be
incoherent. Thus Platonic Theism, like Divine Conceptualism, replaces gc with gc-2. With this
concept of mathematical objects, there is conveniently no Causal Problem (mathematical objects
are simply not caused) nor a Mind-Independence Problem (the mind-independence of mathematical
objects does not conflict with gc-2), but Christian adherents of this view must now explain why
it is theologically valid to reject gc.

The Platonic theist’s basic premise is that when Biblical authors talk about God creating ‘every-
thing’ or ‘all things’ in passages such as John 1 and Colossians 1, they were not actually talking
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about mathematical objects (nor other abstract objects); rather, the Biblical authors meant that
everything concrete was created by God. The argument is that although the Biblical authors prob-
ably did not have the abstract/concrete distinction in mind as they wrote, nevertheless what they
intended to communicate was that God created absolutely all concrete objects. Platonic theists do
not deny the truth of scripture. They only disagree with the absolute creationist about how one
should interpret these ‘everything’ passages.24

To illustrate how a Platonic theist interprets these ‘everything’ passages, imagine a child coming
to school late, walking into her classroom and finding it empty. The janitor in the hallway tells
her, “everyone is outside on the playground.” Even though the janitor used the word “everyone,”
presumably he is not attempting to mislead the student and convince her that every single person
in the world is on the playground. Rather, in the context of their exchange, the girl and the janitor
would understand that the janitor’s use of the word “everyone” has a restricted domain, namely,
all the other students in that particular class. The janitor’s response was not false or deceitful. In
describing this view, Craig gives a similar example in [5]: when you say “there’s nothing in the
refrigerator,” you don’t mean to imply that the refrigerator doesn’t even contain air molecules.

Back to metaphysics, the argument is that in verses like John 1:3, “All things were made through
him, and without him was not any thing made that was made,” the domain of the phrase all things
is the set of concrete objects, not the entire unrestricted collection of all objects of every type.
(See [5, 6, 15] for counterarguments.) In this way, adherents of Platonic Theism can stand on
philosophically solid ground in affirming verses like John 1:3 and Colossians 1:15-16 while at the
same time claiming that God is not the creator of mathematical objects.

What about the Freedom and Sovereignty Problem? Under Platonic Theism, God’s freedom is
restricted; he does not have the power to create or change or abolish mathematical objects. The
proposition that the sum of two odd numbers is even is a necessary truth that God cannot change.
This does compromise go, or at least it requires a reinterpretation of it. Platonic Theism would
opt for the following modification.

Statement (go-3). God’s omnipotence extends absolutely over the realm of concrete objects.

Under Platonic Theism, God in some sense depends on mathematical objects (like the number 3 and
equivalence relations, as described in section 7), which means the Platonic theist needs to modify
or reject ga. ga-2 is not an option, for adherents of Platonic Theism do not consider abstract
objects as being in the mind of God or depending on him in any fundamental way. Platonic Theism
will at least affirm the following weaker version of ga.

Statement (ga-3). God exists a se in the sense that he depends on no concrete object for his
existence.

This allows proponents of Platonic Theism to quickly answer the Dependency Problem: it is simply
not the case that God depends on nothing. He does depend in some way on mathematical objects.25

They would further argue along with proponents of Divine Conceptualism that whatever kind of
dependence God has on mathematical objects, it is not a causal or explanatory dependence. There

24This is so often the case when there are debates about theology among Christians. Whether you look at comple-
mentarian/egalitarian theology, Calvinism/Arminianism, differing perspectives about the current work of the Spirit,
or a hundred other questions, it is rarely the case that one side claims scripture is true and the other claims it is false.
Instead, both sides believe in the truth and authority of scripture, but they disagree about how certain key passages
and broad Biblical narratives should be understood and interpreted.

25and on other abstract objects too, such as wisdom and omniscience
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is no sense in which God’s dependence on mathematical objects in this trivial way diminishes his
glory, majesty, greatness, and supremacy in the slightest. While any dependence on concrete objects
would be theologically problematic, that is not the case for abstract objects.

The Uniqueness Problem is perhaps the hardest problem for Platonic Theism, since this model is
the one that holds Mathematical Platonism most intact. Under this model, it is the case that there
are uncountably many26 necessary, eternal, uncaused, self-existent entities in existence alongside
God. As J. Thomas Bridges phrases it, this model “commits [the Christian philosopher] to a realm
of entities existing eternally alongside God without being caused to exist by God. Such a position
does seem to violate a straightforward understanding of the doctrines of aseity and sovereignty” [3,
p. 279]. First of all, proponents would probably start by denying certain church Fathers’ assertion
that eternity and necessity imply deity. Just because the number 2 is uncreated, eternal, and
necessary, it does not follow that this number is a god or at an equal level of greatness to God in
any sense. Even if God has the properties of eternality and necessity in common with mathematical
objects, it does not follow that they are equal to him in supremacy or deity, any more than the
fact that God shares the property of personhood with humans makes humans equal with God. The
proposition that God is not the only a se being does not in any way diminish his transcendence, his
majesty, his deity, or his supremacy. Platonic Theism does not imply that anything like a Greek
pantheon of actual gods is real, where Zeus, Athena, Poseidon, etc., are on some kind of equal level
with God; Platonic Theism only holds that things like the number 2 and points and squares are
real. There is simply no threat to God’s supremacy from that quarter.

9 Conclusion

Christian philosophers like Craig believe that Mathematical Platonism raises insurmountable ob-
stacles because Mathematical Platonism diminishes God. His solution is to reject Mathematical
Platonism. The three models we have presented above can be viewed on a spectrum, categorized
by how much they agree with Craig. Farthest from Craig’s view is Platonic Theism, which on the
whole simply disagrees that Mathematical Platonism is any threat to God’s supremacy. Closest to
Craig’s view (but still far enough away to continue to affirm a version of Mathematical Platonism)
is Theistic Activism, which preserves a very strong vision of God as creator and a fairly robust
understanding of God’s aseity and omnipotence. Divine Conceptualism is somewhere in the mid-
dle. All three models modify, nuance, or clarify at least some of the initial statements we made in
sections 2 and 3 about God and mathematical objects.

Overall, it seems that a reasonable person could take the position that Mathematical Platonism
and Christianity are fully compatible, with Theistic Activism, Divine Conceptualism, and Platonic
Theism all offering viable paths toward reconciling the problems at their intersection. Of course,
it does not follow that Christianity implies Mathematical Platonism or vice versa. Nor have we
considered whether Christianity is compatible with the proposition that Mathematical Platonism is
false. If Christianity and the proposition that Mathematical Platonism is false are philosophically
or theologically incompatible, then clearly Christians must embrace Mathematical Platonism. How-
ever (at the risk of the fallacy of appeal to authority), since there are learned Christian philosophers
(such as Craig) who deny Mathematical Platonism, at the very least we have reason to suspect that
Christianity could be philosophically compatible with the proposition that Mathematical Platon-

26To say that a set S is uncountable is to say that unlike the infinite sets Z (the set of integers) and even Q
(essentially the set of fractions of integers), the set S is so large that even an infinite list of elements of S could not
contain every one of them. Another way to say this is that an uncountable set is a bigger size of infinity than the
infinity which is the size of the integers.
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ism is false. If that were to be the case, Christians would be free to affirm or deny Mathematical
Platonism without compromising their faith either way. However, all of that is outside of what we
have had the time and space to consider in this paper. Our humbler conclusion here is simply that
Christianity and Mathematical Platonism seem to be compatible; both can simultaneously be true.
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11 Appendix
Theistic
Activism

Divine
Conceptualism

Platonic
Theism

[gc] Everything (besides God himself) is created by God.
✓

[gc-2] Everything concrete (besides God himself) is created by
God. ✓ ✓

[ga] God exists a se.

[ga-2] God exists a se; he does not depend on anything external
to himself for his existence. ✓ ✓

[ga-3] God exists a se in the sense that he depends on no concrete
object for his existence. ✓

[go] God is omnipotent.

[go-2] God is omnipotent in the sense that while all things con-
crete and abstract depend on God for their being, nevertheless
God does not have the power to alter some types of things (in-
cluding mathematical objects), whether by changing them or de-
stroying them, or by not having created them in the first place.

✓ ✓

[go-3] God’s omnipotence extends absolutely over the realm of
concrete objects. ✓

[The Nature Principle] God always and exclusively acts in ways
consistent with his own nature. ✓ ✓ ✓

[mn] Mathematical objects are necessary.
✓ ✓ ✓

[me] Mathematical objects are eternal.
✓ ✓ ✓

[mci] Mathematical objects are causally inert: they cannot par-
ticipate in causal chains as causes or effects. ✓

[mci-2] Mathematical objects are causally impotent; they cannot
cause or affect anything. ✓ ✓

[mnst] Mathematical objects are non-spatiotemporal.
✓ ✓ ✓

[miim] The existence of Mathematical objects is independent of
intelligent minds. ✓

[miim-2] The existence of mathematical objects is independent
of all intelligent minds except God’s. ✓ ✓
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Abstract

Calculus curriculum is often used as prerequisite material for upper division math and science
courses. As such, it can be difficult to find space in the curriculum to accomplish intentional faith
integration activities or assignments. I propose that rather than trying to find space for explicit
faith integration content, instructors adopt an interdisciplinary approach to the presentation of
the calculus curriculum so that faith integration can be woven together with calculus throughout
an entire semester.

1 Introduction

The majority of students majoring in science, technology, engineering, and math (STEM) are
required to take classes from the calculus sequence. These classes teach them the mathematical skills
they will need for their discipline, as well as help develop their critical and logical thinking skills. At
Christian liberal arts universities there is often an expectation that instructors integrate faith with
learning, but the calculus sequence leaves little room for additional faith-based assignments or class
discussions. Universities without a Christian mission typically do not permit overt integration of
faith in the classroom. Both settings can benefit from a more subtle and interdisciplinary integration
of faith.

Consider an analogy to illustrate the motivations for this paper. Imagine a plain colored, standard
reading chair. This object is a staple in many homes, and a lovely complement to most furniture
sets. The reading chair serves a very practical purpose in providing comfortable seating to those
who wish to read, or sit and visit. This is analogous to the calculus sequence within the STEM
fields—practical and foundational to the ability of students to participate comfortably within their
discipline. The explicit model of faith integration would be analogous to throwing a colorful blan-
ket over the chair. Instructors superimpose an assignment about faith or worldview, or initiate
contrived class discussions about God, on top of the already busy calculus curriculum. To those
who see how the structure of the chair supports the blanket it can be a great addition, adding to
the depth of comfort and experience of using the chair. Unfortunately, our students often do not
see the benefits, but instead experience the blanket as a superficial imposition, in the way of fully
experiencing the practical uses of the chair. Students would view the integration of faith and math-
ematics in a more approachable way if instructors were to highlight the natural color variations
of the fibers woven throughout the fabric, and a depth of appreciation for the complexities of the
construction, while not impeding the practical uses of the chair. I would like to suggest that rather
than contrived assignments or discussions of faith, calculus instructors use an interdisciplinary ap-
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proach to faith integration, tapping into the very nature and history of calculus which is rich with
foundations of faith and the Divine.

In this paper, I will give some practical examples of ways instructors can begin practicing an
interdisciplinary integration of faith throughout the calculus curriculum. Instructors are encouraged
to begin by choosing one area or topic to approach in this way, while also pursuing readings and
study to broaden their own knowledge in the history, philosophy, and the Divine that is part of the
rich background to the study of calculus.

2 Practical Examples

This section contains some examples of ways instructors can implicitly and naturally weave dis-
cussions of faith and God throughout the calculus curriculum. Many examples are connected to
concepts of zero and infinity, which are inherently linked to both faith and the historical devel-
opment of calculus. These examples are not intended to be exhaustive, but rather a sample of
possibilities and a starting point for those who wish to develop this approach to faith integration.

2.1 Removable Discontinuities

Consider an exercise in finding limits such as

lim
x→1

(x3 − x2 − x + 3)(x − 2)
(x − 2) .

Instructors use an exercise like this to introduce removable discontinuities and may even present a
sketch of the graph as in Fig (1). Focus is given to the algebraic methods for evaluating this limit
(factor and cancel), and illustrating that a hole exists at the point (1, 2).

Instructors who wish to integrate faith in calculus should not miss this opportunity, as exercises
such as this one demonstrate the concept of faith to students. Rather than initially approaching
this exercise from an algebraic perspective we could allow students to use technology to investigate

lim
x→1

x4 − 3x3 + x2 + 5x − 6
x − 2 ,

the same exercise as above presented in its non-factored form. Students will discover that direct
substitution does not work, but that the graph of the function does not indicate any visible issues.
A point or hole, being without length or width, should more accurately be invisible in a sketch
of the graph. Before presenting the algebraic methods and sketch with the hole drawn visibly,
instructors could take this opportunity to encourage student discussion about the accuracy of our
perceptions, and the faith needed to believe in what we cannot see when we are given “evidence
of things unseen.” (Hebrews 11:1) Instructors could then ask students to brainstorm a list of other
moments in life where the accuracy of initial perceptions should be reevaluated. In my own classes
this approach has led to discussions of various topics such as the existence of God, the struggles
with hidden disabilities, mental health, racism, and fears, among others. With even this short five
minute discussion about perception and faith, students can glimpse the connections between their
own humanity, God, and the mathematical concepts underlying limits.
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Figure 1: Sketch of f(x) = (x3−x2−x+3)(x−2)
(x−2) with the removable discontinuity at (1, 2) clearly

visible.

2.2 Limits at Infinity

Limits give instructors another opportunity to integrate faith while exploring the topic of evaluating
limits at infinity,

lim
x→∞

f(x).

What does it mean for x to “go to infinity”? When we write x → 3 we can easily see the value
of 3 on the x-axis, but when we write x → ∞ we are indicating a point that exists only in our
imagination - when x reaches a magnitude larger than the largest value imaginable. As Amir D.
Aczel writes, “God as infinity cannot be described or comprehended. The Ein Sof1 is far beyond
what a human mind can hope to glimpse.” [2]

The discomfort of thinking about the infinite nature of x can be avoided by focusing on the methods
used to evaluate these limits. But, as Francis Su states, “Truth is a basic human desire. We crave it,
even if it might bring us uncomfortable information.” [7] Consider how students might be challenged
if instead instructors allowed them to sit with the discomfort of the infinite. What does it mean
when students evaluate

lim
x→∞

3x

ex
= 0,

and conclude that the denominator grows faster than the numerator, though both are going to
same point of infinity? Or that

lim
x→∞

√
x2 − 2 − x = −1

2 ,

and “the infinite value of the first term is only 1
2 smaller than the infinite value of the second term”

- as students often interpret the indeterminate form ∞ − ∞?

Exercises such as these provide an opportunity to briefly discuss Cantor’s thoughts, “The fear of
infinity is a form of myopia that destroys the possibility of seeing the actual infinite, even though
it in its highest form has created and sustains us, and in its secondary transfinite forms occurs all
around us and even inhabits our minds.” [5] Giving our students the opportunity to reflect on the

1Hebrew, translated as infinity
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meaning behind infinity and the implications of its acceptance allows them to tap into the beauty
that is described in Ecclesiastes 3:11, “He has made everything beautiful in its time. Also He has
put eternity in their hearts, except that no one can find out the work that God does from beginning
to end.”

In the spirit of weaving the concepts of faith throughout the curriculum I do not suggest contriving a
class discussion on the philosophies of infinity. Rather I suggest that instructors practice seamlessly
incorporating quotes and moments of brief reflection when introducing topics about infinity, and
encouraging students to engage with the concepts at a level beyond the algebraic methods needed
to evaluate the exercises. “Mathematical concepts of the infinite can do much to engage and propel
our thinking about God.” [3]

2.3 Zero and Derivatives

The concept of zero holds a special place in the development of calculus, and as a companion to
infinity it can be just as uncomfortable for students to reflect on. Charles Seife writes, “Cultures
girded themselves against zero, and philosophies crumbled under its influences, for zero is different
from other numbers. It provides a glimpse of the ineffable and the infinite. This is why it has been
feared and hated—and outlawed.” [6]

Foundational to the definition of a derivative,

f ′(x) = lim
h→0

f(x + h) − f(x)
h

,

is the idea that the slope of the tangent line to a curve can be computed by finding the slope
of a secant line between two points and allowing those points to approach each other until their
distance apart, h, reaches zero. Instructors draw curves, secant lines, and tangent lines to help
students understand how this could represent the slope of the tangent line, but many students
miss the troubling nature of the fact that both the numerator and the denominator of this fraction
are headed towards zero. By emphasizing this fact we can allow students to see a “glimpse of the
ineffable and the infinite” when we introduce derivatives. In this context, we have the opportunity
to tell our students about infinitesimals and the story of how Newton and Leibniz manipulated
their equations and notations to either avoid zero and infinitesimals, as in Newton’s case, or to
embrace them, as in Leibniz’s case. Within the development of calculus it was those who embraced
Leibniz’s notation and accepted a method that required faith as much as logic who were able to
further the development of calculus and its implications. [6]

2.4 Integration

Instructors can begin the topic of definite integration by posing the question “What is it that makes
you who you are?” Students may answer personality, physical body, or experiences, to which one
could further ask “Is it only the big and meaningful experiences that contribute to who you are, or
is it the unified whole of all life experiences combined?” As calculus instructors we can easily see
that this discussion is moving towards the idea that we are the integration (unified whole) of all
properties and experiences in life, down to the smallest infinitesimal detail.

Through this introduction, the notation of an integral becomes not just arbitrary symbols commu-
nicating how to compute a value, but it is also telling the story of integrating parts into a unified
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whole. Students are encouraged to think about what makes a person who they are and how every
area of their life is integrated into a cohesive unit.

I had a student recently who interpreted his life experiences as∫ Death

Birth
Happiness & Sorrow d(time) = Life.

This is a great example of both the philosophical context of our personal development, and the
connection between the differential, d(time), and the limits of integration, Birth to Death. As we
teach areas under a curve, or volumes of rotated solids, we can refer back to this analogy to remind
our students that an object or region is fundamentally the unified whole of its infinitesimally small
parts.

2.5 Series

Zeno’s paradox is a fun way to introduce the power of infinite series. When telling the story of
Zeno’s paradox instructors can pose the idea as an open-ended scenario: What would happen if I
was in a race with someone much slower than me and I let that person have a head start 2 meters
ahead of me? We will each be running the race at constant speed, but my speed will be much faster
than theirs. The buzzer goes off and by the time I get to where they started, 2 meters from my
own starting position, they have moved ahead 1 meter. By the time I move ahead another meter
they have also moved ahead, this time by 0.5 meters. If we continue in this way, will I ever be able
to pass them?

It is challenging to not let our students sidestep the discomfort of the infinite and the infinitesimal
when they say that the example is silly and “steps don’t get that small”. We should enlighten
our students to the fact that this Aristotelian-based philosophy and the rejection of the infinite
and the void may give those who wish for logical certainty in the universe comfort, but does not
allow for the establishment of calculus or the mathematical language that describes the natural
world. [4] This philosophy is often so engrained in students’ thinking that they are unaware of the
far reaching implications within mathematics. Students who are willing to reflect on these concepts
become more at peace with the abstractness of infinite series.

2.6 Dimensions

In this last example, students in a multivariable calculus course are presented with the concept of
dimensions larger than three. The response of the main character in Edward Abbott’s book Flatland
illustrates the power of multidimensional thinking, as illustrated by the question A. Square asks of
the Sphere about higher dimensions:

“My Lord, your own wisdom has taught me to aspire to One even more great, more
beautiful, and more closely approximate to Perfection than yourself. As you yourself,
superior to all Flatland forms, combine many Circles in One, so doubtless there is One
above you who combines many Spheres in One Supreme Existence, surpassing even the
Solids of Spaceland. And even as we, who are now in Space, look down on Flatland and
see the insides of all things, so of a certainty there is yet above us some higher, purer
region, wither thou dost surely purpose to lead me—O Thou Whom I shall always call,
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everywhere and in all Dimensions, my Priest, Philosopher, and Friend—some yet more
spacious Space, some more dimension-able Dimensionality, ...” [1]

Multivariable calculus instructors introduce the idea of level curves, visualizing two dimensional
surfaces which exist in three dimensions, and level surfaces, visualizing three dimensional objects
which exist unseen in four dimensions. The initial encounter by students with dimensions higher
than three often results in incredulity and even distrust. They ask how such a thing can exist
when the only language they have to describe it is mathematical and not easily accessible by sight
or touch. This is an opportunity to demonstrate to students a practice of faith and belief in
something abstract and beyond imagination. Instructors can encourage students to utilize these
abstract constructions as an opportunity to expand their ability for belief and faith. It is a reminder
of Job 11:7, “Can you fathom the mysteries of God? Can you probe the limits of the Almighty?”

3 Conclusion

The aim of these examples of implicitly integrating faith throughout calculus is not to have one
main moment or assignment to discuss faith or worldview, but rather to incorporate history, short
stories, questions about faith, and questions about life often during class time. To do this instructors
need to have an interdisciplinary mindset about mathematics: at each moment and for each topic
we are not just bringing calculus to our students, but also the interest in the history, philosophy,
theology, or psychology. The books cited in this paper are a good starting point for those interested
in studying more about the interdisciplinary nature of calculus. In particular, Charles Seife’s book,
Zero: The Biography of a Dangerous Idea, is a quick and approachable read with many fun and
engaging stories around the idea of zero.

Conveying our own interest in weaving together various disciplines translates to our students the
theological foundations of calculus and the complexities inherent in the discovery of calculus and
its methods. This does not take away time from the development of mathematical skills, or hinder
the practical applications of the curriculum. Rather it enhances these with a depth of appreciation
for the colorful variations woven throughout the fabric of calculus.
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Abstract

Imagine responding to G.H. Hardy’s well-known 1940 A Mathematician’s Apology wherein he
claimed that (i) “Engineering is not a useful study for ordinary men.” (ii.) “There is the real
mathematics of the real mathematicians, and there is what I call the trivial mathematics—
which includes its practical application, the bridges and steam-engines and dynamos.” (iii.)
“Most people can do nothing at all well.” (iv.) “Exposition . . . is work for second-rate minds.”
This meditation consists of various open-ended rebuttal thoughts to these claims—which may
prompt further ACMS discussion.

1 Introduction

Allow me to begin this homily on G.H. Hardy’s classic 1940 A Mathematician’s Apology with an
apology of my own. Of all the topics upon which to give an ACMS talk, I never would have had
the temerity to choose this one unless cornered to do so. For who am I to say to a mathematical
giant, Excuse me, did you really mean to say what you did? Yet one day in January 2022, I was
cornered by a note from a friend: “It seems to me that the book simply demands an introduction
by a mathematician, and I think you’re the perfect person to do that.”

The friend was Paul Nahin, an award-winning mathematical expositor and a long-time electrical
engineer, and the book was a few manuscript chapters of his forthcoming The Mathematical Radio
whose subtitle is An Engineer’s Reply to G.H. Hardy. As a clever literary device to win an audience
among the mathematical community, Paul couches his narrative on how the radio works—whose
starting point is Maxwell’s equations of electricity and magnetism—as if he were counter-arguing
Hardy’s bold Apology assertion that engineering mathematics is for second-rate minds, and, by
extension, that the same stigma brands applied mathematics. To amplify this analogy, imagine
that Paul Nahin is an Apostle Paul figure and Hardy is a Festus figure, a Roman procurator in
the Province of Judea as described in Acts 26:34. Therein, in Festus’s courtroom from so long ago,
Paul defends himself against a sedition charge. Will Paul Nahin have any more success with Hardy
than did St. Paul with Festus, who, after hearing the plaintive’s passionate argument, responded
to him by saying, “Your great learning has made you mad!”?

2 Hardy’s Claims

With that introduction, we itemize Hardy’s Apology claims. The first two pertain directly to the
claim of a gulf between between pure and applied mathematics and the remaining ones give insight
into the first two items.
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1. Engineering is not a useful study for ordinary men [9, p. 117].

2. There is the real mathematics of the real mathematicians, and there is what I call the trivial
mathematics . . . which includes its practical application, the bridges and steam-engines and
dynamos [9, p. 64, 139].

3. Mathematics is a young man’s game [9, p. 70].

4. A man’s first duty is to be ambitious [9, p. 77].

5. Exposition is for second-rate minds [9, p. 61].

6. Most people can do nothing at all well [9, p. 67].

7. It is one of the first duties of a professor to exaggerate a little both the importance of his
subject and his own importance in it [9, p. 66].

3 A Little History

To set a foundation upon which to critique this list, we go back in time and then leap forward in
varying incremental steps to specific episodes until the present date. We ask, When did we first
have the luxury of having both pure and applied mathematics? Even as far back as the Pleistocene
epoch, people have always used a little math so as to pay tribute or taxes, settle property disputes,
and build safe structures. But beyond that, when did mathematics bifurcate into quasi-distinct
knowledge fields of pure and applied? Somewhat arbitrarily, we submit that a meaningful answer
is when we began explaining natural phenomena without reference to mumbo-jumbo.

In this context, one of the first philosophers to do so is Thales (620–546 bc). Among Euclid’s
collected propositions attributed to Thales is Proposition 26: If two triangles have angle-side-angle
or have angle-angle-side in common then the triangles are congruent. In fact, this proposition, as
the legend goes, is how Thales determined distances of ships from shore [8, vol. I, pp. 35–36, 304–
305]. In Figure 1 on the following page, imagine that Thales T atop a coastal tower—whose base
point A is directly below T—sights ship S (using a larger-than-life compass-like instrument, one
arm being a vertical pole and the other free to swivel and lock into position so as to align with
his line of sight); whereupon Thales rotates the vertical pole so that the swivel arm now points
to marker B (among many markers) along the visible coastline. Since △TAS and △TAB are
congruent, then sea distance AS is coastal distance AB.

Thales’ trick is both pure and applied geometry; it’s a general abstract theorem and untold specific
instances of that truism. Two hundred years later, purportedly emblazoned above the entrance
to one of the world’s first great schools, Plato’s Athens Academy, was the motto,1 “Let no man
ignorant of geometry enter here.” Plato (c. 429–347 bc) taught that “all the useful arts [such as
making shoes] are reckoned mean,” and proposed that an ideal education consisted in studying (i)
arithmetic, (ii) plane geometry, (iii) solid geometry, (iv) astronomy, (v) music, and (vi) philosophy2

[15, book VII, pp. 264–278]. From out of this pedagogical tradition we have Archimedes (287–212
bc). Most mathematicians—among the few opinions about which we all might share—believe that
Archimedes was among the greatest mathematicians of all time—perhaps on everyone’s top-ten

1Scholars suspect that this inscription was figurative rather than one cut in stone. A more literal rendition is,
“Let no one ignorant of geometry come under my roof” [22].

2Plato’s last subject includes natural philosophy, or what is now called science.
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Figure 1: Thales measuring a ship’s distance at sea, author sketch.

list.3 Yet he was also an incredible engineer. Witness Plutarch’s description of how Archimedes’
boast, that given a place to stand, he could move planet Earth itself, was put to the test by
Syracusan King Hiero, who challenged Archimedes to launch “a ship of burden which could not be
drawn out of the dock without great labour and many men,” whereupon,

[Archimedes, loading the ship] with many passengers and a full freight, sitting himself
the while far off, with no great endeavour, but only holding the head of the pulley in his
hand and drawing the cords by degrees, he drew the ship in a straight line, as smoothly
and evenly as if she had been in the sea.

Yet Plutarch (46–119) goes on to say that Archimedes, as Plato had believed before him and Hardy
would believe long after him, “repudiated as sordid and ignoble the whole trade of engineering, and
every sort of art that lends itself to mere use and profit.” Instead, Plutarch continues, Archimedes
“placed his whole affection and ambition in those purer speculations where there can be no reference
to the vulgar needs of life.”4 What are these purer speculations? My favorite is Archimedes’
Diophantine riddle of the Sun God’s Cattle:

If thou are diligent and wise, O stranger, compute the number of cattle of the Sun,
who once upon a time grazed on the fields of the Thrinacian isle of Sicily, divided into
four herds of different colors white, black, yellow, and dappled. In each herd were bulls,
mighty in number according to these proportions: the white bulls were equal to half
and a third of the black together with the whole of the yellow, . . .

and so on, ultimately to give us a total of eight equations. Although Archimedes probably never
solved his own riddle, the least positive possible answer is approximately 7.7603 × 104658 cattle [2,
pp. 232–238]. But just posing this puzzler is the very nature of pure mathematics.

Now we leap forward to shortly after the fall of Rome. During house arrest prior to execution,
Boethius (c. 477–524) wrote The Consolation of Philosophy popularizing Plato’s educational slate,
now partitioned into the quadrivium and the trivium: arithmetic, geometry, astronomy, music,
grammar, rhetoric, and logic. All of this material focused on pure rather than applied knowledge,
at least in theory.

3Hardy said, “Archimedes will be remembered when Aeschylus is forgotten,” [9, p. 81].
4As evidence that Archimedes held such a view of engineering, Plutarch simply says that Archimedes did “not

deign to leave behind him any commentary or writing on such subjects [as engineering].” Nevertheless, Plutarch’s
explanation suggests that Plutarch himself—and most likely a host of others—held this view [16, pp. 376–378].
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To illustrate a study item from, say, the pure field of arithmetic, Figure 2 is my adaptation of a
puzzle from Boethius’ De Arithmetica,5 which was his rough translation of a Greek manuscript of
Nicomachus of Gerasa (60–120). Imagine the gray square is a 4 × 4 matrix A, with cell entries aij

in row i and column j, where i and j go from 1 to 4. Imagine also that the integers are written in
Roman numerals.6

Figure 2: An arithmetic puzzle from Boethius’ De Arithmetica.

Back to the puzzle: the integers outside the gray square can each be obtained in two distinct
ways by arithmetic operations on the integers inside the gray square. In particular, we allow
equality between the (i) sum of two integers, (ii) the product of two integers, (iii) doubling an
integer, and (iv) squaring an integer. Can you, the student, find them? Moreover, how are the
integers themselves within the gray box related to each other? For example, from A’s row-3, we have
a31 × a34 = 6272 = a32 × a33; and a31 × a33 = 3136 = (a32)2. Unimpressed? Remember that these
integers are in Roman numerals,7 a system never designed for computational purposes. Instead,
those computations were performed using an abacus of sliding beads along rods or a counting board
with movable tokens. To solve our puzzle, a student would translate, say, two desired numerals
from Roman (or Greek) into proper arrangement onto one of these instruments; manipulate the
tokens thereon, performing the desired operation; and translate the result into Roman numerals.
Ironically, such puzzles as this one develop students’ facilities with the abacus—useful skills which
a potential employer might prize—but the pure aim of the puzzle was to develop insight into the
nature of number so as to discover more (interesting yet arguably useless) relations within number
theory.

Next, we leap forward in time to shortly after the bombshell technological innovation of the printing
press. My favorite artist of all time is Albrecht Dürer (1471–1528). His 1525 four-volume The Art
of Measurement with Compass and Straightedge was one of the first printed mathematical texts in
German. Therein, he introduces a construction technique for a general family of curves known as
the trochoid.

5Boethius’ book was “the source of all arithmetic taught in schools and universities for over a thousand years,”
[17].

6To represent the integer ten thousand, linguistic anthropologist Stephen Chrisomalis says that the Romans used
the symbol dd , explaining that the Roman symbol for one thousand in the time of the Punic wars was initially
written as ⃝| , and that over time it “opened up from the bottom to look like an M,” [5, p. 39].

7At least up until after the days of Fibonacci’s 1202 Liber Abbaci introducing the fantastic computational capa-
bilities of the Indo-arabic number system.

ACMS Journal and Proceedings Page 280 23rd Biennial Conference



Figure 3c is a snippet from Dürer’s woodcut “The Circumcision” showing what is now called
a limaçon—which Dürer constructed using a modified compass.8 To use the instrument, set the
compass down so that O remains fixed on the page; arrange arms A and B as desired, so determining
angle θ and ϕ; define step-size increments for angles θ and ϕ at the joints O and Q; advance arms
A and B by those angle step-sizes and mark your page at point P , and repeat. One hundred years
later, geometers such as René Descartes (1596–1650) transformed Dürer’s mechanical procedure
into algebraic terminology and onto coordinate systems, so much so that the realm of mathematics,
which had been classical geometry with a bit of algebra, has become algebra with a bit of classical
geometry.

(a) Dürer’s modified compass (b) Trochoid construction (c) Trochoidal woodcut

Figure 3: Albrecht Dürer’s trochoid family of curves.

The point of this story is that Dürer applied a mathematical idea to help create and market
art. Once this primitive idea percolated into what we might call the mainstream of mathematics,
aha, the mathematical community delighted in making ever more fanciful curves.9 This dynamic
between pure and applied repeats itself time after blessed time. Upon which shall we focus? If you
are someone like Stephen Wolfram of Mathematica fame, why not fine-tune all the world’s great
mathematical algorithms for universal usage into a convenient computer algebra system (CAS) and
make a fortune along the way. However, if you are someone like Grigori Yakovlevich Perelman
who resolved the 1904 Poincaré conjecture and nevertheless turned down the million dollar Clay
Millennium Prize, then you might be like Archimedes who, in the sack of Syracuse,

. . . was intent upon working out some problem by a diagram. In [the midst of Archimedes’
calculations], a soldier commanded him to [move]. Declining to do so before he had
worked out his problem, the soldier, enraged, drew his sword and ran him through [16,
p. 380].

Just one more leap, this time to the dawn of the twentieth century. At the end of his life, Alfred
Nobel (1833–1896), who had made a fortune marketing explosives, was faced with distributing
that wealth, ultimately choosing to endow monetary prizes celebrating extraordinary practical
discoveries. In 1901, the first prizes10 were awarded in physics, chemistry, medicine, literature,
and peace, but not mathematics. Why? The bottom line answer: Everyone knows, whether we
like it or not, that pure mathematics is impractical. Tracing mathematical development through
time we see that it has continually bifurcated, spawning the disciplines of engineering, accounting,

8Figure 3a is my sketch of Dürer’s modified compass. Figure 3b is [7, book 1, figure 40]. Figure 3c is [6, cut 184].
For further details on how Dürer manipulated his compass to construct the trochoid in the “Circumcision” see [19,
chapter VII, pp. 163–187].

9To explore one mathematician’s top-ten curves of all time, see [11].
10In 1968, prizes were also extended to economics.
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physics, economics, statistics, operations research, computer science, communications technology,
and artificial intelligence. Mathematics jettisons, as it were, all the practical aspects of its success,
so as not to thwart its grand quixotic quest at understanding in full the elusive abstractions of
number and space. To personify mathematics, imagine that mathematics is Diogenes and the
world view of what is important is Alexander the Great; one afternoon, approaching from the west,
Alexander asked Diogenes, who11 was drawing figures in the sand, what he could do for him; and
Diogenes replied, “Just move out of the sunlight.”

4 The Great Gulf Claim

Now, I’ve exaggerated a bit, more or less in the spirit of Hardy’s claim (7). Yet, hopefully, these
last few paragraphs have set a foundation upon which to discuss his other claims.

Let’s consider points (1) and (2) about engineering. Hardy co-authored about 100 papers with
John Littlewood (1885–1977) whose comments often enlighten Hardy’s observations, such as this
recollection: One day at Trinity College of Cambridge University,

in 1912, it was proposed that the Engineering students should be taught some real
mathematics by the mathematical staff. I asked F. J. Dykes, the Lecturer in Engineering,
what he would like me to select; all he said was: Give the buggers plenty of slide rule
[12, p. 142].

I used the slide rule for all my college physics courses in the early 1970s, but teaching the slide
rule back in the early twentieth century is like teaching the abacus and the counting board back
in the days of Boethius. Yet Professor Dykes had a valid point, namely, His students needed help
at that fundamental level! When my older son, with a master’s in mechanical engineering, landed
his first position at General Electric, he was placed into a multi-year training program where all
the new recruits were taught afresh the ins and outs of the trade. Part of this trade is to realize
that the company must be commercially competitive—and while experimentation with new ideas is
encouraged—make sure you all follow the company line. This same spirit was much in vogue, say,
in the days of Johannes Gutenberg (c. 1400–1468) and the printing press; as his team was trying to
mass produce copies of the Bible, Gutenberg continued tinkering with engineering improvements
to the press, so much so, that his services were terminated shortly after the first few of about 200
complete holy writ copies rolled out the door. This it’s-good-enough production-line approach to
exploring knowledge, I believe, forms much of the target for Hardy’s denigrating remarks about
engineering.

When Hardy uses the word useful in a positive sense, he classifies as useful much of college mathe-
matics as well as electricity and magnetism and fluid dynamics [9, p. 133-135]. Hardy’s main point:
“What is useful above all is technique, and mathematical technique is taught mainly through pure
mathematics.” When Hardy uses the word pejoratively, he concludes

If useful knowledge is . . . knowledge which . . . contributes to the material comfort of
mankind, then the great bulk of higher mathematics is useless [9, p. 135].

Blunt and harsh words from a master mathematician who is heartily convinced of both the innate
value and ridiculousness of a liberal arts education! When reading Hardy’s Apology, dynamical

11Paintings and sculptures of this classic interaction often depict Diogenes in a drunken stupor, but I like to think
he was doodling.
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systems professor Daniel Silver reminds us “that Hardy enjoyed teasing his audience,” citing George
Pólya (1887–1985) who recalled, “Hardy liked to shock people mildly by stating unconventional
views . . . because he liked arguing” [18]. For example, listen to Hardy as he closes his 1928 Josiah
Gibbs lecture in New York City,

A month’s intelligent instruction in the theory of numbers ought to be twice as in-
structive, twice as useful and at least ten times as entertaining as the same amount of
“calculus for engineers” [10].

Such strident language may charm some, yet it fails to amuse everyone.12 In a 1941 review, Frederick
Soddy (1877–1956), a 1921 Nobel laureate in chemistry, called Hardy’s Apology “cloistral clowning”
[21]. Despite this caustic view, consider the robust nature of Soddy and Hardy’s relationship: at
the end of his review, Soddy mentioned that during a dull faculty meeting in 1931, he passed a
note to Hardy asking for the sum on the left of equation (1).

∞∑
m=1

∞∑
n=1

(2n + 1)−2m =
∞∑

n=1

(2n + 1)−2

1 − (2n + 1)−2 =
∞∑

n=1

1
(2n + 1)2 − 1 =

∞∑
n=1

1
4n(n + 1) = 1

4

∞∑
n=1

(
1
n

− 1
n + 1

)
= 1

4 . (1)

“In an incredibly short space of time”—and while the meeting was yet in progress—Hardy passed
Soddy the rest of equation (1). As a more thoughtful commentary, here’s Hardy’s friend, Norbert
Wiener (1894–1964),

When I returned to Cambridge after working with engineers for many years, Hardy
used to claim that the engineering phraseology of much of my mathematical work was
a humbug, and that I had employed it to curry favor with my engineering friends at
MIT. He thought I was really a pure mathematician in disguise, and that these other
aspects of my work were superficial. This, in fact, has not been the case [1, p. 158].

The physicist turned novelist C.P. Snow (1905–1980), who had read Hardy’s original 1940 Apology
manuscript prior to publication, and who wrote the Apology’s foreword appearing in editions since
1967, echoed these thoughts in his 1959 Rede lecture, saying

Pure scientists have by and large been dim-witted about engineers and applied science.
Their instinct was to take it for granted that applied science was an occupation for
second rate minds. I say this sharply because thirty years ago I took precisely that line
myself [20].

As a last expert witness on Hardy’s points (1) and (2), we call on Mary Cartwright (1900–1998),
a Ph.D. student of Hardy’s and a co-author with Littlewood on a number of papers. Here’s her
insight into how they thought.

Hardy, who taught me, was very much against applied mathematics, but [he once]
wrote that a certain problem is most easily grasped in terms of cricket13 averages.
[And] Littlewood and I did a lot of work on the theory of ordinary differential equations

12See [3] for an exhaustive compendium and commentary on reviews of Hardy’s Apology and for Hardy’s allusions
therein.

13On sabbatical at Princeton in 1928, G.H. Hardy—an ardent cricketer from early childhood—wrote, “I read reports
in the papers by the hour and worship Babe Ruth and Lou Gehrig [with] batting averages ranging from 0.387” [1,
pp. 132–133].
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arising from problems of radio engineering. Littlewood [had] worked on antiaircraft gun
fire in the First World War, and he translated our problems, which were suggested by
radio values and oscillations, capacitance and inductance, etc., into dynamical problems
and called all the solutions of our equations ‘trajectories’ as if they were the paths of
missiles shot from a gun [4].

That is, no matter how much we might profess to be a pure mathematician, we often transgress into
applied mathematical thinking while doing mathematics. Moreover, Cartwright and Littlewood’s
collaborative pioneer work on Van der Pol’s nonlinear differential equation showed “the existence
of two stable [solution] sets of subharmonics of different orders” and also of strange “fine structures
[now] recognized as typical manifestations of the butterfly effect” and of chaos theory in general
[13]—a domain that most mathematicians might agree is a rich inextricable blend of pure and
applied mathematics.

5 The Remaining Claims: Items 3 through 6

Figure 4 is my sketch of Mary Cartwright, a cat, and a radio: while Mary explains modeling the
radio, equations stream from the radio, somewhat alarming the befuddled cat. In particular, Van
der Pol’s equation streams to the top right of the radio, and Maxwell’s third equation streams to
the left. Incidentally, this image may form the cover art for Paul Nahin’s book.

Figure 4: Mary Cartwright and cat with radio.

Now to comment on the remaining enumerated Hardy points: Is mathematics only a game for young
men and women? point (3). Hardy says, “I do not know of an instance of a major mathematical
advance initiated by a man past fifty” [9, p. 72]. Yet,

Littlewood remained active in mathematics even at an advanced age: his last paper was
published in 1972, when he was 87. One of his most intricate papers, concerning Van
der Pol’s equation and its generalizations, was written when he was over seventy. 110
pages of hard analysis [12, p. 15–16].

Paul Erdős (1913–1996) toured the world, visiting one university after another like a Johnny Ap-
pleseed planting trees of joint work around the globe, until nearly the end. In San Diego for a
Joint Mathematics Meetings conference, 11 January 2013, Richard Guy (1916–2020) gave a talk on
continued fractions. To a packed room of about 500, he introduced himself, “You didn’t, most of
you, come to hear math, but to see a dinosaur.” But really, most of us were thinking, No, we came
to see a dinosaur and to hear some math.
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With respect to point (4), is ambition truly necessary? Hardy reminds us that he came to math-
ematics because, “I wanted to beat other boys [at exams]” [9, p. 144]. Littlewood, too, had this
competitive element. As Belá Bolobás describes,

In 1971, a paper was submitted claiming a proof of RH [the Riemann Hypothesis].
[Both Littlewood and I examined the proof and] after a few hours of painstaking work
he [Littlewood] was relieved to find a mistake [12, p. 16].

That is, Littlewood was hoping that he himself would be the one to prove RH! Littlewood, however,
acknowledges that not everyone is similarly wired. Of Edmund Landau (1877–1938), Littlewood
recalls, “It was said round 1912 that it gave him [Landau] the same pleasure when someone else
proved a good theorem as if he had done it himself” [12, p. 125]. If doing mathematics were like
playing baseball or cricket, some of us would be all-stars and others, like me, would perhaps, at
best, be umpires. The former require a killer instinct and the latter just plain obstinacy.

What about point (5)? Hardy’s 1928 Josiah Gibbs lecture won the 1932 Chauvenet Prize for best
expository article in mathematics as published in North America. With respect to writing, Hardy
confessed in a letter to Bertrand Russell,

I wish you could find some tactful way of stirring up Littlewood to do a little writing.
Heaven knows I am conscious of my huge debt to him. But, in our collaboration, he
will contribute ideas and ideas only: and that all the tedious part of the work has to
be done by me. If I don’t, nothing would ever get published [1, p. 155].

It is well-known that Hardy wrote well, and was proud of his ability to put words together. His
saying that “exposition is for second-rate minds” is like Babe Ruth14 saying, “Anyone can swing a
bat.” In other words, stellar writing is a rare gift.

For point (6), is it true that few, if any of us, can do anything well? My two-year old grandson
can walk upright and utter complete sentences! Wow, I’m impressed. That’s my standard for
excellence. But suppose you are a Leonardo da Vinci. His deathbed last query [14] to his assistant
was, “Dimmi, dimmi se mai fu fatta cosa alcuna,” that is, “Tell me, tell me if anything ever got
done.” Oh my, God bless us all.

6 A Parting Challenge

Finally, has this homily tarnished Hardy’s Apology? Indeed no! His presentation is a rare soul-
searching commentary on the art of being a mathematician by a world-class mathematician. To
highlight this dynamic, Hardy deliberately opened his Apology not with a conversation between
himself and a mathematician but between himself and the poet Alfred Hausman (1859–1936). In
particular, Hardy recalls debating Hausman on point (5) at length at high table in the Hall at
Cambridge, saying, “We argued [the point] all through dinner” [9, p. 62–63]. In that same spirit,
and especially in the ACMS context, let’s continue the conversation, asking as does Hardy, “Why is
it really worthwhile to make a serious study of mathematics? [And] what is the proper justification
of a mathematician’s life?” [9, p. 65].

14On sabbatical at Princeton in 1928, Hardy—an ardent cricketer from early childhood—wrote, “I read reports
in the papers by the hour and worship Babe Ruth and Lou Gehrig [with] batting averages ranging from 0.387” [1,
pp. 132–133].
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Abstract

In the classic game Sorry!®, players try to move tokens around the board from Start to Home
in as few turns as possible. Moves are determined by cards, some of which provide alternative
options—in particular one card specifies “forward 10 spaces or backwards one space.” Because
backward moves can lead to a shortcut Home, we ask when using that option is optimal. To
make this analysis we model the movement of a single token around the board as a Markov
process, from which we can determine the expected number of turns for different strategies. We
also look at the effect on the length of the game for other card actions and speculate how this
might play out with multiple tokens and players.

1 Introduction

It could be argued that mathematicians either have more fun or less fun when playing games, de-
pending on whether one views an interest in the underlying mathematics as adding to or distracting
from the natural fun of the game. Virtually every game has mathematical aspects and it is natural
to use mathematical analysis to better understand the games we play. The goal of the analysis may
be to determine the best play at any stage of the game, such as for Yahtzee [8, 11]. It might be
to determine the comparative value of positions, such as Monopoly [1, 2]; or the chance of success
of an attack, as in RISK [5, 10]. Or it might determine the expected length of a game, such as
Chutes and Ladders [3, 4] or Hi Ho! Cherry-O [12]. For games where the probability of moving
between “states” can be determined precisely, Markov chains provide convenient models which lead
to the determination of the expected number of turns to achieve a certain game objective (such as
getting a token to the end space). Johnson [7] gives a nice intro with examples using several games.
When a game includes some choices for the player (a “strategy”), optimality can be determined by
comparing Markov model results for each strategy. This approach can also be used to explore the
effects of possible changes to the game rules. Of course many games include interaction between
the players, which can be adverse or helpful; to reduce complexity analyses are often carried out
on a “single-player” version of the game.

In this report we look at the game Sorry!®1, seeking to determine strategies that minimize the
expected number of turns to move a single token from the Start space to the Home space. Moves in
Sorry! are determined by a card selected from a deck (rather than a die or spinner) and some of the
cards have options for what the move can do. Hence the player may use a particular strategy for
choosing between the options and we can compare the expected number of turns. In particular, we
wish to determine where on the board opting for a small backwards move instead of a large forward

1Sorry! is produced by Hasbro
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move improves the player’s chances of taking advantage of a shortcut. The regular Sorry! game
has up to four players, competing to move their four tokens from Start to Home and some of the
cards allow moves that can affect their opponents’ token locations. While we won’t attempt to
model the interaction between players, we will discuss its possible impact on the expected number
of turns to move each token around the board.

Because moves in the game are determined by selecting cards from a deck, which changes after each
draw, the probabilities of moving between “states” (spaces on the board) depend on what cards
have previously been drawn. This is different from games that have independent turns, such as
those determined by a roll of dice. So the Sorry! scenario is technically not Markovian. However,
in Section 3 we will make an argument for using probabilities that do not depend on the state of
the deck of cards and that the Markov model provides a reasonable approximation, at least to the
extent of being able to compare strategies.

2 The Game

Sorry! was introduced by Parker Brothers in 1934, and is similar to earlier games Parchessi (USA)
and Ludo (England), all of which are in the vein of “race” style games like Parcheesi (India) and a
variety of Amerindian games [9]. Over the years there have been changes to the rules for Sorry! ; we
will focus on the 1992 version2. The Sorry! board, shown in Figure 1, has a continuous track around
its perimeter, a Start space for each player, and a Safety Zone (with matching color) branching off
the outer track leading to the player’s Home space. Tokens move from a player’s Start space around
the board clockwise toward their Safety Zone, to reach their Home space. There is a “shortcut”
from the Start to the Safety Zone, but it can only be traversed through backwards moves. The
track also has “slides” which advance a token that lands on the beginning of the slide by exact
count.

Figure 1: The Sorry! board

Movement is determined by selecting the top card on the deck, which is reshuffled whenever it is
completely depleted. The deck has 45 cards: five 1s; four each of 2, 3, 4, 5, 7, 8, 10, 11, 12; and
Sorry.

2rules for other versions can be found online but apparently not in one place
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They have these actions:

• a 1 card either moves a token from their Start space to the closest space on the track or moves
a token one space forward;

• a 2 card either moves a token from Start or moves a token two spaces forward; then the turn
continues by drawing again;

• a 3,5,8, or 12 card moves a token forward that many spaces;

• a 4 card moves a token backwards four spaces;

• a 10 card gives the option to move a token forward ten spaces or backwards one space;

• a 7 card gives the option to move one token seven spaces forward or to split the seven space
moves between two tokens;

• an 11 card gives the option to move a token forward eleven spaces or to swap positions with
an opponent’s token;

• a Sorry card allows the player to substitute a token in their Start space for any opponent
token, which is sent back to its corresponding Start space.

These are the key rules of play:

• tokens must reach Home by exact count (if splitting a 7 both parts must be used);

• all card actions must be carried out unless not allowed, even if the result is disadvantageous;
if the move cannot be made it still counts as a turn; the 11 card swap is never required;

• tokens are not affected by slides of their same color;

• tokens in their Safe Zone cannot be moved by another player’s Sorry or 11 action; tokens
cannot move into another player’s Safe Zone;

• if a token ends its move on a space already occupied by a token of a different color, then the
other token is sent to its Start space; if the tokens are of the same color, then that move is
not allowed.

For our analysis we will play one-person Sorry!, which uses only one token and no opponents. In
this case the 7 and 11 cards only have the option to move the token that many spaces forward and
the Sorry card will have no effect on the token while still counting as a turn. So the 10 is the only
card that gives the player an option. We are interested in determining when it is advantageous
to move backwards one space rather than forward ten spaces. Obviously this is only
practical near the beginning of the path around the board as it might enable use of the shortcut. In
order to determine precisely on which spaces to make the choice to go backwards, we will compare
the expected number of turns to move the token from Start to Home. For future reference we
number the spaces near Start, referring to the blow-up in Figure 1: 0 for the space where tokens
move from Start; 1,2,3,. . . for the spaces clockwise around the outer track from there; −1 for the
space counterclockwise—the “shortcut space”.

ACMS Journal and Proceedings Page 289 23rd Biennial Conference



3 The Markov Set-Up

For the sake of analysis we consider each space that the single token can occupy to be a state.
Then to model the movement as a Markov process we must determine the probabilities for moving
between each pair of states and these probabilities must only depend on the states. As mentioned
before, because moves are determined by cards drawn from a deck, the state of the deck of cards
would not be the same every time a token is on a specific space on the board so the probability
can change. In order to use the Markov model analysis we will assign what might be considered
“long-term probabilities” based on the proportion of each type of card in the deck. Below we give
rationale for why this should be a reasonable and effective accommodation.

In this model there are 61 allowable states: the Start and Home spaces, the 54 spaces on the outer
track (including the “shortcut” space and excluding the start spaces of the six opponent-colored
slides), and the five Safe Zone spaces. Once we have determined the probabilities of moving between
all of the states, we create the 61×61 transition matrix A (partially shown in Figure 2) where each
entry ai,j is the probability of moving from state i to state j on a single turn. For examples, the

Start space −1 space 0 space 1 space 2 · · ·
Start 0.800000 0 0.119216 0.010096 0.000567

space −1 0 0.089456 0.111111 0.008105 0.098985
space 0 0 0 0.089456 0.111111 0.008105
space 1 0 0.008077 0 0.089456 0.111111
space 2 0 0 0.008077 0 0.089456

... . . .

Figure 2: Transition matrix A

1,1 entry is the probability of the token not leaving the Start space, the 2,4 entry is the probability
of a token going from the −1 space to the 1 space, and the 0 in entry 5,2 reflects that it is not
possible for a token to go from space 2 to space −1 in a single turn. The full transition matrix
can be requested from the author3. The i, j entries of the matrix products A2, A3, An give the
probabilities of moving from state i to state j in exactly 2, 3, or n turns, respectively. In particular,
the entries along the first row (corresponding to the Start space) of each An give the probabilities
of moving from Start to each state in exactly n turns. This is also the probability that turn n + 1
starts on that space. The sum of the 1,j entries of all of the powers of A give the expected number
of turns that start in state j. Grinstead and Snell [6, Chapter 11] give a thorough presentation of
how to find the expected game length: we trim the row and column from A corresponding to the
absorbing state (Home space) to form matrix B. Then the fundamental matrix N = (I − B)−1 is
found. Each entry along the first row of N is the number of turns that a token is expected to start
in that state. So the sum of the entries on the first row of N gives the expected number of total
turns for the token to get from Start to Home. Briefly, this can be seen since N is equal to the sum
I + B + B2 + B3 + · · · whose i, j entry adds the probabilities of getting from state i to state j in
0, 1, 2, 3, etc., turns. This entry then equals the expected number of turns that a pawn that was
once in state i will start a turn in state j. Figure 3 shows the beginning of the 60 × 60 matrix N .
The sum of all the entries of any row of N gives the expected number of turns for a token starting
in that state to reach Home, thus the row 1 sum is the expected length from Start to Home, but
also the row 2 sum is the expected number of turns for a token already on space −1 to get Home,
etc.

3email gswain@ashland.edu
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Start space −1 space 0 space 1 space 2 · · ·
Start 5.000000 0.015329 0.662139 0.151296 0.036626

space −1 0 1.103852 0.149431 0.034275 0.141975
space 0 0 0.015321 1.105736 0.149994 0.037285
space 1 0 0.013535 0.016935 1.106279 0.151772
space 2 0 0.015060 0.015361 0.017510 1.108245

... . . .

Figure 3: Fundamental matrix N = (I − B)−1

Next we focus on determining each entry of the transition matrix A. This will depend on the chance
of drawing a card from the deck that determines this move, and this is where using the deck of 45
cards rather than a spinner or die causes some difficulty. We expect that as the deck is exhausted,
the probability of getting a specific card changes; however this is not the case. For any one specific
card it has an equal chance of being in any of the 45 places in a shuffled deck. So for example, the
chance of drawing an 8 card from a fresh deck is clearly 4

45 , which is also the probability that the
last card in the deck is an 8, but also the same chance of the nth card in the deck being an 8. Of
course this assumes we don’t know anything specific about which cards were already drawn from
the deck; as soon as we have any such information, then the corresponding conditional probability
is not the same. In reality the probabilities, for example P (draw 8 | token on space j), depend on
what cards moved the token to the space. In order to be able to use the Markov process, we will
assume that, at the start of each turn, we are at a random spot in a shuffled deck with no prior
information about which cards may have already been drawn.

So the same 4
45 probability ( 5

45 for the 1 card), holds for any card on any turn, except that whenever
a 2 card is drawn the same turn continues with another card drawn. This card could also be a 2
and so a single turn could be quite complicated, especially if the deck is exhausted in the middle
of a turn. The most 2s that could be drawn consecutively is eight: the last four cards in the deck
are 2s and the first four cards in the reshuffled deck are also 2s. As an example of calculating
probabilities for turns that involve repeated 2s we consider two 2s followed by an 8 (a 2, 2, 8 turn).
If the first card drawn is in any of the top 43 positions in the deck then this probability is 4

45
3
44

4
43 ;

if the first card drawn is in position 44 then the probability is 4
45

3
44

4
45 (the 8 is drawn from the

reshuffled deck); and if the first draw is the last card in the deck then the probability is 4
45

4
45

4
44 .

Weighting these three possibilities assuming our place in the deck at the beginning of any turn is
uniformly random, we see that the probability of drawing two 2s and an 8 is

43
45

( 4
45

3
44

4
43

)
+ 1

45

( 4
45

3
44

4
45

)
+ 1

45

( 4
45

4
45

4
44

)
≈ 0.000566654.

Similar calculations show that the probability of drawing eight 2s and an 8 is about 0.000000000000098.
The transition probabilities in matrix A need to be accurate enough to reflect even these small prob-
abilities.

We can now explain some entries in matrix A (Figure 2): the 1,1 entry is 36
45 = 0.8 reflecting all

cards except 1s and 2s, and the 2,3 entry is 5
45 = 0.1 since only a 1 card will move the token from

space −1 to space 0. Since several different turns can have the same end result—for example a 7,
a 2,5, a 2,2,3, and a 2,2,2,1 all move the token 7 spaces—many entries in matrix A involve adding
several probabilities. For example, the 3,3 entry, which corresponds to staying on space 1, reflects
a Sorry card draw (probability 4

45 = 0.08) or a 2,2,4 draw (probability 0.000566654 as above). The

ACMS Journal and Proceedings Page 291 23rd Biennial Conference



role of slides, at the end of a move or in the middle of a move that involves drawing a 2, means
that probabilities for moving between states that are the same number of spaces apart may not
be the same depending on where they are on the board. Also, the requirement to reach Home by
exact count restricts the action of some cards as the token gets closer to the end. All of this makes
creating matrix A a technically demanding task.

4 When to go Backwards

The strategic question is, “When do I take the move back one space option when a 10 card is
drawn?” When the token is fewer than 10 spaces from Home this move is required, but in all other
circumstances it is the player’s choice. In general one wants to maximize forward progress on a
move, so even moving backwards to take advantage of a slide will do worse than moving 10 spaces
forward. The one exception is when a backwards move enables the use of the shortcut. The obvious
scenario is if we are on space −1, since the space we might designate “−2” is really space 58 in the
normal clockwise direction.

Opting to move backwards from space −1 will be our base case strategy, and this will be reflected
in the transition probabilities. The “strategies” we consider are whether we will always move
backwards from space 0, from space 1, etc., specifically where we should switch from opting to
move backwards to moving forward to optimize the expected number of turns. While space −1 is
the only one for which this automatically leads to the shortcut, it is plausible that a subsequent 4
card (“move back four spaces”) or additional 10 cards could combine to achieve the shortcut from
other spaces. While the chances may be small, the huge net forward progress of the shortcut will
affect the expected number of turns to get the token Home.

when to move backwards expected # of turns
only on space −1 25.41097

only on spaces −1 or 0 25.42297
up to space 1 25.43240
up to space 2 25.45093
up to space 3 25.46879

...
...

never 25.41984

Figure 4: Expected number of turns for different “10 card strategies”

These strategies are easily compared by modifying appropriate rows in the transition matrix. Figure
4 lists the calculated expected lengths. There is no need to extend the table as the expected lengths
will increase as we extend the “backwards” strategy further clockwise from the beginning space.
These results show that the optimal strategy is to only move backwards with a 10 card when
on space −1. This result should be surprising to players of the game, as most players would move
backwards from space 0 as well. But of course that makes sense if they have other tokens in play
and can “wait” for a fortuitous draw. The wait for a 4 card or one of the three remaining 10 cards
is expected to be about 6 turns (using the geometric distribution where each turn is an independent
Bernoulli trial with p = 7

44). Realistically a player would not want to “wait” on space 0 since it
blocks other tokens from leaving start, and on space 1 or 2 they would have an expected wait of 11
turns for a 4 card (p = 4

44).

The last entry in the table shows that it makes almost no difference if the backwards option is never
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(unless required) used. This is surprising but is explained by the very small probability of a token
ever getting to space −1—that token must have come from space 0 using a 10 card or from space
3 by means of a 4 card action! Clearly in the single token version the shortcut is rarely achieved.
On the other hand, in the full version a player has a greater opportunity of success, but also can
be thwarted by opponents.

5 Other Questions Answered, Somewhat

We can use the Markov model to answer other questions about the effects on the expected number
of turns of other aspects of the Sorry! rules.

• How much does the opportunity to draw again on 2 speed up the game? The adjusted Markov
model, where a 2 does not draw again, yields an expected game length of 27.6218 turns as
opposed to 25.41097. The increase of about two turns is reasonable as we can expect a 2
card to appear about twice in a 25 turn game (around half of the deck), hence that many
additional turns.

• In the regular game being able to split 7 moves between two tokens allows a player to take
advantage of more slides and makes getting the exact count to go Home easier. This efficiency
is not available when only one token is in play. We can simulate this effect by allowing the
single token to move any number of spaces up to 7 (as though they had another token to use
the rest of the moves on). This modification yields an expected length of just 19.83479 turns.

• It is difficult to assess the effects of the 11 card swap action and the Sorry card, which depend
on having multiple players. It seems fair to assume no net effect of the swap option for the
11 card as on average you would get moved backwards by someone else as often as you get
to move forward through swapping. The effect of the Sorry card is not only to move a token
forward, and the defensive player back, but it also saves or adds the turns spent in trying to
get a 1 or 2 card to leave the Start space. To model a worst case scenario we stipulate that
the single token moves back to Start any time a Sorry card is drawn or it moves to the 0
space if it is at Start. The expected length under these assumptions is 36.08460 turns!

• How many turns are used just to move from Start? The 1,1 entry of the fundamental matrix
is 5, which means we don’t expect to get out until the fifth turn, on average. This agrees
with the geometric distribution with p = 9

45 . On the other hand, draws at the beginning of
the game start with a fresh deck and we can calculate the precise expected value for where
the first 1 or 2 card appears in the deck by

1 9
45 + 236

45
9
44 + 336

45
35
44

9
43 + · · · + 3736

45 · · · 1
10

9
9 = 4.6.

So, even with multiple players and at any point in a game, we can expect 4 to 5 turns to be
used just to move a token from Start. Of course when a player has other tokens in play these
turns aren’t wasted. Regardless, it takes about 20 turns for a token to get Home once it is
out of Start.

• What effect does having to reach Home by exact count have on the length? This turns out to
have a much greater effect than even the Start restrictions. Adjusting the transition matrix
to allow for overshoots of Home, the expected game length is 15.03224, a savings of more
than 10 turns! Some of this efficiency can be achieved in the full game if you can rush a token
to the Safe Zone, then wait for a fortuitous card while spending turns on other tokens.
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Clearly the significant difference between our single token analysis and the multi-token game is the
opportunity to wait for a fortuitous card; at least we have a clearer idea now of what the best case
scenario is.

6 Conclusions

By modeling the movement of a token around the Sorry! board we are able to see the effect, in
terms of how many turns it takes to get the token Home, of applying different strategies for using
the 10 card actions. We also explored the effects of “splitting a 7” and the Sorry card. Additionally,
we discussed whether and how the one-token game may relate to the regular multi-player, four-
token game. By no means have we “figured out” the game, but we have shown a process that can
help analyze strategies for efficient play. One significant aspect of what we’ve done is that we have
applied the Markov model to a situation that is not actually Markovian. We’ve argued that this
gives a reasonable approximation to reality and should still provide a useful and effective way to
compare strategies.

One might wonder how good the approximation really is? To explore this, Rupesh Maharjan, a
computer science student at Ashland University, wrote code to play the one-token game, with the
deck shuffled only at the start and whenever it was depleted. His program counted the number of
turns it took to get the token Home and averaged this over a million games. The result, 24.2627
turns, is very close to our Markov model estimate of 25.41097. It would be interesting to explore
how to adjust the transition probabilities to reflect in some way the likely state of the card deck
when the token is on each space throughout the game, seeking to make the Markov estimates even
closer to the simulated average.

Of course the same analysis we’ve done can be done for two tokens (612 states!) or even four tokens,
assuming the creation of the transition matrix can be automated. Then priority strategies, such as
“get all tokens out of Start” versus “get a token Home”, can be compared. It may also be fun to
model a pair of opposing tokens to explore how adversarial or cooperative strategies compare. Or
you can just get out your Sorry! game and play for the fun of it and try to ignore any mathematical
questions that come to mind!
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Abstract

Many of the hallmarks of Christian education identified in the Bible by Benedict of Nursia
fit naturally in mathematics curriculum. Successes and challenges to incorporating Benedictine
Hallmarks were considered from a newly revised Core course on Mathematics in Modern Society.
Multiple methods were adopted to integrate these values into the course. Short readings from
scripture and mathematics literature that related to the campus values were posted on the course
webpage for discussion each week. In-class activities included reflective exercises on applying
these values in mathematics. Community was built through these activities as students listened
to each other’s ideas and techniques. Hospitality was modeled to the instructor’s classes through
office hours held in the tutoring center. A term paper requiring students to describe mathematics
involved in their hobby or area of study encouraged many to practice stewardship of resources
using their mathematical knowledge or to express mathematics relevant to their cultures.

Benefits of learning and obeying God’s Word are described throughout the Bible, with chapters
such as Psalms 1 and 119 dedicated to the importance of God’s Word. In Matthew 4, Jesus also
provided examples of how to rebuke temptation using God’s laws in Deuteronomy. Benedict of
Nursia, a sixth century Catholic monk, recognized the necessity of God’s Word as he quoted and
paraphrased passages from God’s Word in writing his monastic rule for seeking God with others
[9]. The Rule of Saint Benedict still directs the life of Benedictine monasteries as they carry out
their work.

While schools sponsored by Benedictines do not function with the same structured schedules as the
monasteries, they share many of the Benedictine values as hallmarks of Christian education. At
colleges such as Saint Martin’s University, these common values are Awareness of God, Community
Living, Dignity of Work, Hospitality, Justice, Listening, Moderation, Peace, Respect for Persons,
Stability, and Stewardship [7, 9]. Saint Martin’s University also arranges these values more con-
cisely into the campus core themes of Faith, Reason, Community, and Service [7]. Saint Martin’s
University is a small, private liberal arts university of about 1500 students in Lacey, WA. Saint
Martin’s also recruits diverse students and employees, and is categorized as a Minority Serving
Institution [5].

The Benedictine hallmarks provide a bridge between teaching with a Biblical worldview and the
campus culture of Saint Martin’s University. While the Benedictine values apply to the entire Saint
Martin’s University community, the university Core courses are structured to develop individuals in
the Benedictine values. The Core mathematics course, Mathematics in Modern Society, specifically
focuses on the theme of reason through examining problem solving in data, statistics, voting, and
finance. This course serves students in majors without a specific mathematics course requirement,
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such as Communications, English, Fine Arts, History, Political Science, Social Work, Sociology,
and starting in 2022, Elementary Education. When the author first taught the Core mathematics
course in Fall 2019, Saint Martin’s University celebrated a different Benedictine hallmark each
week, which he explicitly connected to our course study of mathematics and the Bible through
short class discussion. The author continues to share many of the activities and Bible verses while
encouraging discussion with other mathematics and statistics courses as well.

1 Searching for Knowledge

One of the most remembered activities of students the author reconnects with or who join him for
multiple classes in sequence is a scavenger hunt on campus. While most activities assigned in class
are intended to be completed that session, for this assignment students are instructed that they
will need to find the required information to be discussed and submitted for grading at the next
class meeting. The exercise asks students to complete the statement:

“The reflected image is:”

Students are instructed in writing on the course learning management system and verbally in class
to find the statement on the dedication plaque next to the You Mirror, which was gifted to Saint
Martin’s University from Academy of International Education, Saint Martin’s University’s sister
school in Tokyo, Japan. Directions are also provided for finding the You Mirror and plaque. Most
students find the mirror, plaque, and quote successfully before the next class, sometimes with
additional help from the instructor or classmates. The complete statement reads:

“The reflected image is the person responsible for success in academic pursuits.”

After checking that the class has recorded the statement, the instructor asks them which Benedictine
value(s) this represents? While there is often more than one answer, the most common response
has been Dignity of Work. Students usually discuss and comment on the importance of their
responsibility in their academic work. Each semester, the instructor reminds the class of Paul’s
exhortation in Ephesians 4:1, “As a prisoner for the Lord, then, I urge you to live a life worthy of
the calling you have received.” The instructor’s encouragement to the class is that their current
calling involves active participation and responsibility in their mathematics course and studies to
learn skills necessary for later courses, work, and life. The action of physically finding this quote
seems to help many students remember this lesson, the associated Benedictine value, and Biblical
teaching.

2 Hospitality in Service

Each semester, the author holds a few of his weekly office hours away from his office to make himself
available where the students are instead of requiring them to find him. In addition to posting office
hours and locations on the office door and course learning management system, the author also
regularly invites classes to visit him with questions or for group work. Some semesters, the author
reserves an unused classroom space before or after a class to take student questions or help them
review recently covered material. However, most semesters he schedules a few office hours in the
university Center for Student Success. These options provide more space than the office for multiple
students to work together and with the instructor.
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Working in the Center for Student Success also familiarizes students with a designated study area
on campus where they can work together and get help from peer tutors even when the instructor is
not available. Moving away from the office limits the range of course materials the instructor can
bring with him, but recent notes and a laptop or campus computer are usually enough to address
most student questions. Completing course preparations or scholarship also do not usually happen
when working with students in public work spaces, but the benefit of welcoming and showing care
for students outweighs these limitations. Students have shared that the instructor’s accessibility
helps them build a habit of working in the same place each week and provides the reassurance of
having an instructor or tutor to clarify questions with.

When Saint Martin’s University celebrated Hospitality Week during Fall 2019, the author an-
nounced and posted on the office door and learning management system for all of his courses that
his office hours would be held in the Center for Student Success. In sharing his observation of
hospitality that week and through the semester with the classes, the instructor reminded them
of Benedict’s encouragement that, “Anyone who knocks at the door of the community should be
welcomed as Christ, for he himself will say: I was a stranger and you welcomed me” [9, p. 81].
The instructor also shared a few verses later where in Matthew 25:40, Jesus teaches, “Truly I tell
you, whatever you did for one of the least of these brothers and sisters of mine, you did for me.”
May the Holy Spirit continue to guide the author and Saint Martin’s University in better showing
students and each other the love of Jesus.

3 Reason and Peace

As the first exam approaches each semester, the author posts in the learning management system
of each course an article from The Atlantic entitled The Myth of ‘I’m Bad at Math’ [2], and asks
students to read and reflect on it. The first exam for the Core mathematics course also happened
to occur during the campus Reason Week of Fall 2019, putting students’ reasoning skills to the test.
While there are many sources on mindset, this article is more accessible for introductory students.
Both in class and individual meetings throughout the semester, the instructor encourages students:

Do not be anxious about anything, but in every situation, by prayer and petition, with
thanksgiving, present your requests to God. And the peace of God, which transcends
all understanding, will guard your hearts and your minds in Christ Jesus. (Phil. 4:6-7)

The author also shares that he finds these two of the easiest verses to memorize and two of the
most difficult to apply. Many students have responded that they found the article helpful in seeking
peace and reassurance to adopt a growth mindset for overcoming difficulties.

4 Stewardship and Calling

The final project for the Core mathematics course was a short term paper describing the mathe-
matics involved in a topic of each student’s choosing related to their hobby or interest. Topics the
author had not anticipated included the role of mathematics in the Benedictine value of steward-
ship. Many students wrote about financial literacy, including factors and statistics on debt, credit,
and retirement savings. One sociology student wrote a paper on the costs and difficulties of home
ownership, describing taxes, homeowner’s insurance, and the amortization of mortgage payments.
While she was passionate about the topic, the author was surprised when this sociology student’s
academic advisor shared that the Core mathematics course was her favorite class that semester.
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The year after this student graduated, the university wrote a story about her work to educate and
help individuals find work and living accommodations.

A native Hawaiian student also wrote about the importance of stewarding nature well. She cited
and interpreted statistics from reports correlating tourism and the decline in coral reefs near Oahu
before the pandemic, as well as improvements in the coral reef during the pandemic when tourism
slowed. Another student studying history education described statistics on high school dropout
rates for local school districts and factors related to improving graduation rates. She concluded
with excitement to make a difference for her future students. These projects also encouraged the
instructor in hearing about the passions and callings God has given these students.

5 Outcomes and Conclusions

Instead of searching for results, Jesus taught in Matthew 6:33 to, “seek first the kingdom of God
and his righteousness, and all these things will be added to you.” As the author does so, God has
provided opportunities to explicitly build bridges between teaching with a Biblical worldview and
the Benedictine hallmarks practiced by the Saint Martin’s University community. A few of these
outcomes are notable, while the author may not have heard of others yet.

Working at a faith-affiliated school that grants faculty freedom to share about faith in and out of
class and encourage students and coworkers in theirs has allowed the author opportunities to sow
seeds of the good news of Jesus. Students were encouraged to find and value peace from anxiety, a
gift directly from God that he has also allowed people to discover through research. Many students
now have a lifelong lesson to remember the dignity of work and to walk worthy of the calling
we have received, which includes projects applying mathematics. Throughout this journey, these
classes have met and worked in community to actively practice Listening to shared learning and
growing experiences. These lessons and activities generally provide beneficial discussion for other
mathematics courses as well.

The work of incorporating Biblical principles with Benedictine hallmarks continues with prayer for
Saint Martin’s University, the community, and local congregations. A possible next step includes
developing a Core ethics course on dignity of work in STEM pedagogy. Readings from the vast
literature on Culturally Relevant Pedagogy are being organized to responsibly structure such a
course, with flexibility for careful listening to the interests of Saint Martin’s University’s students
of diverse experiences and backgrounds. Much like a Core mathematics course, this Core ethics
course will also be fun to teach from a Biblical worldview.

Benedictine values are practiced by many other communities outside of monasteries and institutions
they have founded. People of Catholic and other Christian traditions who resonate with The Rule
of Saint Benedict and seek to live by it as monks working in the world can grow and serve as
laypeople known as Oblates of Saint Benedict [6]. Benedictine values may also be explored at other
institutions through study and courses on church history. At Whitworth University, Jerry Sittser
has lead students in one month January-term courses on the history of Christian spirituality at a
Presbyterian camp in the Cascade Mountains [8]. While Sittser noted that students found living
The Rule of Saint Benedict a challenge, they also learned to value play as part of Sabbath rest,
how to pray in work, and that the church is more than what is often experienced here and now in
modern, western society.

In addition to working at a Benedictine university, the author learned more about Benedict of
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Nursia and the values from his Rule by reading an English paraphrase and commentary by Jonathan
Wilson-Hartgrove, a Baptist minister [9]. A four month daily reading following the schedule of the
monasteries is available from The Order of Saint Benedict [4]. Through reading Wilson-Hartgrove’s
paraphrase with this schedule, the author prayerfully formed the described cultural bridges to the
Biblical worldview for teaching his classes. Similar exploration of recorded Christian practices may
be helpful to classes at other institutions as well.
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Abstract

The past decade has witnessed “learning from data” catapulting into great public attention.
In such a context, I describe an undergraduate course, Mathematics of Data Science, that
immediately follows courses for Linear Algebra and Multivariable Calculus, aiming to fill the
educational need of a new generation of math majors and minors. I also discuss how the
organization of the math content led to synergy with a few other upper-level courses and how
the teaching links to new modes of scientific reasoning and Christian apologetics.

1 Introduction

1.1 Beginning with Calculus

Calculus is still the main starting point of North American university education in mathematics.
Although there have been decades of effort to rethink the calculus sequence: differential and integral
calculus of a single variable, followed by multivariable or vector calculus, still hold the role of
“ushers” of mathematics to almost every university student with a need or an interest to major or
minor in mathematics. In a society that increasingly values “learning from data” over “learning
from formulas,” how can we use these standard course prerequisites to help students understand
“data”?

Observing that more and more mathematics programs are offering a freshman-oriented course on
some aspects of linear algebra, I have developed a course titled “Mathematics of Data Science”
(hereafter abbreviated as MDS) that is designed to be taken immediately after finishing a course
in linear algebra and a course in multivariable calculus. This paper begins with the background of
the course’s conception, followed by the mathematical ideas behind the chosen learning outcomes,
along with some pedagogical and philosophical reflections, and ends with discussions on how MDS
fits into a math program and the role of Christian witness at a personal and an institutional level
in the midst of a data-driven paradigm shift in the society.

1.2 The rise of data science education

Why would a course like MDS be of interest to the next generation? How is it relevant to a
mathematics department in a liberal arts university, often with a modest variety of mathematics
courses? First and foremost, it is clear that the content of data science is of interest to the next
generation. Seeing how nowadays people are “hyped up” by promising prototypes of “self-driving”
cars, “computer-generated” artwork, and business “intelligence,” to name a few, it is unsurprising to
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see more and more mathematics programs re-branding themselves accordingly. Indeed, according
to Davenport and Patil, the authors of highly read article back in 2012: Data Scientist: The Sexiest
Job of the 21st Century [10], the majority of data scientists surveyed just a decade ago, “had PhDs
in some scientific field, were exceptional at math and knew how to code,” but “[n]ow there are
hundreds of degree programs in data science,” says the same authors ten years afterward [11]. It
does seem that various departments and institutions have been pivoting to adapt to the societal
expectation of teaching “some understanding of data” in a quantitatively oriented degree - and a
mathematics department will inevitably need to give a good answer to that.

Why would MDS, at the undergraduate level, be a viable way of responding to this demand? If
you have browsed through new educational resources, especially from engineering, business, and
statistics programs, you may agree that current offerings look like a bimodal distribution. They
either promote low-barrier courses requiring minimal math and coding background (e.g. the “Data
Science Specialization” by Coursera) or specialist courses with more rigorous prerequisites (e.g.
courses that are part of a master-level program that examine the concepts underpinning modern
algorithms). It seems to me the former caters to “data science users” and the latter caters to “data
science specialists.” Davenport and Patil’s findings concur that “most of [these new data science
programs] are master’s degree programs,” even though initiatives at the doctoral, undergraduate,
or even high-school levels also exist [11].

Is there really a gap and such bimodality in mathematics education in the context of data science?
As far as I know, a systematic analysis may not exist yet. However, increasingly, some leading schol-
ars in their fields of expertise observe some gaps of knowledge of this sort. For instance, machine
learning researchers Deisenroth et al. opined in the foreword of their new book [4] that “Current
machine learning textbooks primarily focus on machine learning algorithms and methodologies and
assume that the reader is competent in mathematics and statistics.” On the other hand, outside of
academia, a quantitative finance specialist, Wilmott, in his book [12], observes that “. . . there are
quite a lot of books that describe the use of machine-learning techniques . . . not much code, and
very elementary mathematics . . . then there are the specialist books. Each devoted to a narrow
field, but extremely deep.”

It leads me to wonder, “Is it true that a comprehensive mathematical foundation course for data
science demands the academic maturity of a postgraduate student?” After a survey of the admis-
sion requirements and course structures of some of the more mathematically oriented master-level
programs, I concluded that it isn’t. Moreover, a motivated math major or even minor could do well
in the foundational mathematics concepts. The good old calculus and linear algebra combination
is still an excellent background knowledge for a mathematics student pursuing data science and
machine learning studies. In addition, I found something even more surprising - I realized that
classic calculus texts such as the two-volume by Apostol [1, 2], written more than 60 years ago
with an explicit goal of blending multivariable calculus with linear algebra still fits these technical
requirements quite well! The main caveat is that we must re-imagine how the idea of “function”
and “vector” should be interpreted in the modern data science context. Some simplification and
organization of materials are also necessary to make MDS feasible within a semester.

In the following, I shall begin by defining what the word “data” means to mathematical sciences
and use it to describe how knowledge in calculus and linear algebra can be used to support a
mathematical foundation for data science. I will provide brief descriptions of the topics covered in
MDS that has been offered at Trinity Western University in British Columbia, Canada, since 2021.
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1.3 A mathematical interpretation of “data”

The English word “data” is, in fact, Latin. It is the plural form of ”datum,” which means ”the
givens.” This shade of meaning is faithfully translated in French as ”les données” and “!Mנתוני”
(natonim) in Hebrew, which both mean “that which are given.” While this meaning does not
directly entail a numerical representation of data, the modern meaning does. From the Merriam-
Webster dictionary, we find these three entries for how the word “data” is used nowadays:

1. factual information (such as measurements or statistics) used as a basis for reasoning, discus-
sion, or calculation;

2. information in digital form that can be transmitted or processed;

3. information output by a sensing device or organ that includes both useful and irrelevant or
redundant information and must be processed to be meaningful.

I interpret these loosely to correspond to (1) scientific, (2) technological, and (3) engineering aspects
of the meaning of “data” to society. In consideration of these aspects of applications, I extract from
the above discussion two mathematically useful senses of “data” as follows:

The empirical sense: that which is given empirically as a means to confirm or falsify a precon-
ceived hypothesis or to inform or generate a new hypothesis;

The inferential sense: that consists of a possibly huge but finite set of numbers by which truths
for a certain domain of knowledge can be inferred

Various milestone events in science easily corroborate “the empirical sense of data.” For example,
Nightingale collected data about injured soldiers and conducted exploratory data analysis to put
forward a novel hypothesis that the main reason for mortality was preventable diseases but not
combat-related trauma. Another example is the Eddington experiment, when observational data
from a solar eclipse helped establish Einstein’s theory of relativity - a preconceived hypothesis -
over Newtonian mechanics as the mathematical framework of choice for cosmology.

However, when you think about the kind of mathematics or statistics and the form of scientific
reasoning involved, these two examples are rather different. In the latter, the fact that the a
posteriori data differed less from the a priori numerical values computable from theories is the
reason why Einstein’s theory was better. This relationship between data and mathematical theory
has a striking property that the numbers computed from a scientifically confirmed mathematical
theory would render numbers measured from empirical observation dispensable. In fact, this is
a reason why computer simulations of physical laws can be used to replace frequent empirical
measurements. This is the legacy of hypothesis-driven science.

In contrast, I opine that, for the purpose of educating math undergraduates, we should focus on
the “inferential sense of data” that relates better to novel modes of reasoning in data science,
especially for applications in artificial intelligence. To further elaborate on this second sense of
“data,” let us consider a thought experiment in a hypothetical world that upends “the empirical
sense of data.” Suppose creatures lived in a universe constructed by fractals, such as the like of
Mandelbrot set, and suppose these creatures are given the engineering prowess to both measure a
lot of data points in this world and also computationally infer, based on the data, that z2 + c = z is
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the law by which this world was formed. Suppose also that this theory computed from data matches
perfectly with subsequent observations. What, then, would “empirical data” mean? Wouldn’t such
a data-driven theory production render “data measured” and “data computed” one and the same?
This thought experiment touches the ongoing debate of the value of data-driven science vs. the
traditional hypothesis-driven science.

Not dwelling on philosophical debates, my proposition is that a course like MDS that concerns
the “inferential sense of data” and develops mathematical concepts for obtaining an understand-
ing of numerical data is valuable to both math majors and minors. More specifically, I propose
that the following three categories of mathematical ideas would enrich a mathematics student’s
understanding of “learning from data”:

• representations by finite sets of numbers, as vectors, matrices, and tensors

• the concept of abstract functions as mappings between high-dimensional spaces

• the interconnection of approximation, optimization, and convergence

These categories are chosen to broadly give a sample of how mathematical thinking can help
clarify the “whats” and “hows” of foundational algorithms in data science. In MDS, we treat
the “inferential sense of data” by formalizing “data” as vectors, and “inference” as learning how
to approximate functions, followed by a broadening of differential calculus as the way to solve
optimization problems to incrementally improve approximations. A notable omission in this list of
categories is the “why” – interpretations of the model functions constructed and analyzed.

We found it more feasible to help students who have just finished the Calculus sequence to transition
from associating “functions” as a collection of “algebraic manipulation techniques”, to “functions”
as maps lacking a determinate form before data comes in. These categories represent the kind of
mathematics that are more readily stated in a precise way and amenable to manual computations
that build up conceptual understanding. Examples of content that can be found in other intro-
ductions to data science, but omitted in MDS, include data engineering best practices, statistical
reasoning and data visualization techniques.

With these categories in mind, I now summarize the mathematics that I found helpful to cover in
MDS. They are selected for this article based mainly on two criteria:

• Is the concept a logical extension of what are usually covered in calculus and linear algebra?

• Does a profitable reformulation exist to reduce conceptual complexity to help provide a big-
picture view of the theoretical ideas in data science?

2 Some Useful Mathematics for Data Science

The following content contains highlights of key ideas for each of the seven core topics covered,
interspersed with pedagogical notes as appropriate.
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2.1 Modelling Phenomena by Mathematical Functions.

The overarching purpose of the kind of mathematics presented in MDS is predicated on the premise
that we are ultimately trying to understand how to learn a multi-input multi-output function f
that maps from a domain X to a codomain Y , but we lack precise knowledge of how to define X,
Y and f and thus seek ways to learn about these sets and the mapping between them from data.

The abstractness of the standard definition of function was emphasized by encouraging students
to first come up with non-numerical examples of inputs and outputs that they are interested in,
to conceptualize what I called the “phenomenological aspect” of a function. This stems from the
observation that in data science, the term “function” is more often replaced by “model,” which
connotes some procedure of “model training” using data. Students will subsequently see examples
of functions in applications of data science, such as

• a linear combination of basis functions with undetermined coefficients (for linear regression)

• nested compositions of multi-input multi-output linear functions with single variable nonlinear
activator functions (for artificial neural networks)

• probability distributions with parameters inferred from data (for Gaussian mixture models)

A key learning goal of this topic is to appreciate various ways a function can be defined with a
potentially high-dimensional domain or codomain.

2.2 Introducing Differentiability by Linear Approximations.

The protagonist of calculus—derivative—appears immediately after broadening the concept of func-
tions and is motivated by the need to understand how multiple outputs of a function vary with
multiple inputs. Having prior exposure to the concept of differentiability, students now learn a more
advanced formulation due to Fréchet for normed vector spaces. Beginning from a single variable
function y = f(x), and an anchor point (x0, y0) with y0 = f(x0), the mapping f of x to y values
is said to be differentiable at the point (x0, y0) if and only if it can be approximated by a linear
function in a neighborhood, i.e., the approximation y − y0 ≈ m(x − x0) commits an error that
diminishes “faster than linearly” as x → x0. This leads to the idea that the first derivative is the
scalar multiplier on differentials, commonly understood as slope: m = dy

dx .

This formulation leads naturally to the multiple-input multiple-output version y⃗ − y⃗0 ≈ J(x⃗ − x⃗0)
that achieves a similar goal. Even though the concept of “norm” is not to be introduced at this
stage, students would still be able to appreciate the fact that the Jacobian matrix is a natural
extension of the first derivative concept:

J = dy⃗

dx⃗
=


∂y1
∂x1

∂y1
∂x2

· · · ∂y1
∂xn

∂y2
∂x1

∂y2
∂x2

· · · ∂y2
∂xn...

... . . . ...
∂ym

∂x1
∂ym

∂x2
· · · ∂ym

∂xn

 .

That such a matrix comes about from a rectangular arrangement of individual first partial deriva-
tives ∂yi

∂xj
—each of them describing how a single output varies with a single input—illuminates the
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need to define matrix-vector multiplication properly. Matrix multiplication is now seen as a fun-
damental step to approximate differentiable functions. Likewise, the chain rule can be motivated
naturally by further allowing each of yi and xi to vary in time so that

dy⃗

dt
= dy⃗

dx⃗

dx⃗

dt
.

Students mostly have no trouble relating this to the notations used in single variable calculus, and
the formal resemblance of notations motivates students to appreciate that a proper way to define
the multiplication on the right-hand side above is needed, and they would discover that it agrees
precisely with how matrix multiplication was taught in an earlier course of linear algebra.

2.3 Vector-Based View of Matrix Algebra for Non-Square Matrices.

Except for orthogonal matrices that describe coordinate change, most advanced topics in linear
algebra that primarily concern square matrices (e.g., properties of determinants, characteristic
polynomials, Jordan normal form, and matrix exponential) are omitted in MDS. Rather, we discuss
matrices that are either very wide (n ≫ m) or very tall (m ≫ n), using examples of models in data
science that takes high-dimensional inputs (multiple camera video footages of a self-driving car) to
low-dimensional outputs (power and steering angles at each of the four wheels), vs. those that take
low-dimensional input (short textual prompts that describe a picture) to high-dimensional outputs
(high-resolution AI-generated artworks).

This way of presentation has two kinds of pedagogical effects. Firstly, it paints a different intuitive
picture of various fundamental theorems in linear algebra. For instance, students are excited to see
that the rank theorem: r = rank A ≤ min{m, n} implies how very high-dimensional models could
become feasible to construct as the “principal” dimension depends on the lower dimension (e.g.,
power and steering at the four wheels, short textual prompts). Secondly, by purposely distancing
from manual calculations about square matrices, like factoring characteristic polynomials (which
are only tractable enough to be assigned as homework for very small n), students are guided to
think more like a data scientist, where exact formulas are rare (e.g., that the probability of Ax⃗ = b⃗
holds is almost zero when b⃗ comes from actual noisy data). They would be more motivated to learn
about the normal equation AT Ax⃗ = AT b⃗ and the concept of orthogonal projection.

One other important highlight in this topic is the singular value decomposition (SVD) of an arbi-
trary matrix that represents a linear map Φ : X → Y with dim X = n and dim Y = m, presented in
a compact outer-product expansion form (which Strang called “the third part of the fundamental
theorem of linear algebra” in [9]):

A = σ1w⃗1v⃗T
1 + σ2w⃗2v⃗T

2 + · · · + σrw⃗rv⃗T
r ,

where the right singular vectors v⃗1, v⃗2, . . . , v⃗r ∈ Rn are coordinate vectors representing elements of
the domain X and the left singular vectors w⃗1, w⃗2, . . . , w⃗r ∈ Rm are coordinate vectors representing
elements of the codomain Y , and where the descending list of positive singular values

σ1 ≥ σ2 ≥ · · · ≥ σr > 0

naturally induces ordered bases by telling us how important each pair of coordinate vectors (v⃗k, w⃗k)
is, and that we need exactly r = rank A such pairs of coordinate vectors to fully represent the origi-
nal matrix A. The pairs with higher singular value multipliers are called the “principal components.”
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2.4 Norms as the Key Instrument in Optimization

Instead of a discussion of the venerable spectral theorem for square matrices based on the fundamen-
tal theorem of algebra, we opt to characterize singular values through an optimization procedure
due to Rayleigh’s energy-based definition of eigenvalues that relates to induced matrix norms:

σ1 = max
∥x⃗∥=1

∥Ax⃗∥ = max
∥y⃗∥=1

∥AT y⃗∥ = ∥A∥ = ∥AT ∥,

v⃗1 = argmax
∥x⃗=1∥

∥Ax⃗∥, w⃗1 = argmax
∥y⃗∥=1

∥AT y⃗∥.

(The subsequent singular values are then searched in orthogonal complements of the span of singular
vectors already found, e.g., v⃗k+1 ∈ (span{v⃗1, v⃗2, . . . , v⃗k})⊥ etc., the fact that these orthogonal
complements have falling dimensions entail the ordering of singular values σ1 ≥ σ2 · · · ≥ σr > 0
is appreciated by some brighter students. This approach has various advantages in conceptual
simplicity (see [9]).

On the one hand, this paves the way for the application of the method of Lagrange multipliers
to connect singular values to the multipliers that occur at the critical points of a constrained
optimization problem—the central kind of mathematical problem in the implementation of machine
learning algorithms. On the other hand, a demonstration of the Monte Carlo method to solve
the constrained optimization problem—i.e., trying random unit vectors to maximize the norm,
highlights the role of loss functions defined through norms, and the usefulness of approximate
numerical representations in data science.

2.5 Multi-linear Derivatives and Chain Rule by Propagating Values on Graphs

The idea of a positive/negative definite Hessian matrix is a difficult concept in multivariable cal-
culus. Usually, calculus textbooks opt to introduce the “second derivative test” for multivariable
scalar-valued functions omitting vector and matrix notations. In contrast, at this point of the
course, students are more ready to see that the order of derivative in a Taylor expansion corre-
sponds to the order of tensor that approximates a multi-linear operator, as shown below:

f(x⃗) ≈ f(x⃗0) + ∇f(x⃗0)(x⃗ − x⃗0) + (x⃗ − x⃗0)T H(x0)(x⃗ − x⃗0) + · · · ,

where f(x⃗0) is zeroth order, a scalar; ∇f(x0) is first order, a vector; H(x0) is second order, a
matrix. When a minimum occurs at x = x0 so that ∇f(x0) = 0, then it becomes apparent why the
quadratic form in the next term defined by the Hessian matrix H(x0) deserves an extra adjective
“positive definite” when it is strictly positive regardless of the direction of the vector differential
x⃗ − x⃗0, and this then clearly describes a minimum.

The previous introduction of the outer product expansion form of SVD would also help students
visualize tensors as the result of stacking: scalar components can be stacked to form vectors;
likewise, vectors can be stacked to form matrices, and matrices can be stacked to form 3rd order
tensors, etc.

A comprehensive discussion of neural networks would be beyond the scope of MDS. Still, it would
be instructive to show the “flow diagram” of how the chain rule is computed for a few nested
compositions of multi-input multi-output linear maps with scalar nonlinear activator functions
using directed graphs - one of the hardest parts of the course for students to grasp. This is
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because drawing directed graphs representing the value propagation mechanism of the chain rule is
technically very different from the mathematical formalism used elsewhere in MDS. But for those
who would like to specialize in artificial neural networks later, this is a prerequisite knowledge to
the engineering aspects of the model training algorithms through calculating gradients.

2.6 Connecting Iterative Algorithms of Optimization back to the Nature of
Real Numbers

At this point, we take some time to review with students the concept of approximation (through
error control) and the concept of optimization (through searching for critical points) that we en-
countered earlier. We will then introduce the third foundational concept—convergence—the main
goal of iterative algorithms that solve optimization problems. The idea of convergence brings back
students’ memory of the limit operator and presents an excellent opportunity to introduce them
to the grander scheme of the nature of real numbers. The logical basis for “number-crunching” in
data science can now be traced back to the classical axioms of the real number set:

The Nested Interval Property —which I call the “axiom of approximation.” Given an order
relation inherited from rational numbers, a nested sequence of intervals with shrinking widths
is supposed to contain a unique element contained by all intervals. The understanding of this
axiom connects several ideas in numerical analysis.

Dedekind Completeness Property —which I call the “axiom of optimization.” Every bounded
subset of real numbers admits a least upper bound (supremum) and a greatest lower bound
(infimum), and continuity of a function concerns that these bounds in the range of function
values be attainable as the maximum and minimum values of the function. This axiom is an
essential part of the logical foundation of optimization.

Cauchy Criterion of Convergence —which I call the “axiom of convergence.” It is pointed
out that this is applicable whenever a norm is present to give a measure of distance between
numbers, between vectors, or between functions. This axiom asserts that a unique limit exists
for any sequence (e.g., from an iterative procedure) whose tail eventually does not differ with
respect to the given norm. This axiom is a core idea in various branches of analysis.

The fact that these three axioms are logically equivalent as the foundation of analysis brings about
a deep sense of awe and presents an opportunity for faith integration. We Christians who believe
that the Word of God created the world can be encouraged in our faith that He fits all things
perfectly together in His creation and be grateful that we are privileged as creatures made in God’s
image to understand this amazing connection between the material world and the world of our
souls and thoughts.

2.7 Visualizing Probability Distributions and Major Theorems with Sequences

The previous topic on the nature of sequences of numbers affords us an analytic foundation to
understand random variables, trials, the law of large numbers, and the central limit theorem.
Students are reminded that data science obtained its success because of the sheer amount of data
we can process nowadays. The value of “Big Data” is thus connected mathematically to how a
large amount of data allows us to sequentially define coarsening processes necessary for humans
to interpret models’ predictions. After outlining the basic ideas and interpretations of probability
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space, partial Riemann sums were computed to demonstrate the similarities of the definitions
of expectation, cumulative density functions, and marginalization of joint distributions between
discrete and continuous random variables.

Other key coarsening processes demonstrated numerically are that of the additive laws of large
numbers and the central limit theorem. In the context of MDS, which does not treat theory of
probability comprehensively due to the lack of time and student preparation, I found it more pro-
ductive to resort to simulations and numerical demonstration of the validity of these key theorems
by computing and visualizing partial sums of series, followed by the expectation maximum algo-
rithm used to recover parameters in a Gaussian Mixture Model, and thus connecting back to the
previous theme of using optimization to learn functions. It is only at this stage that students will
see a formal treatment of noise in data as probability distributions, because all the mathematics
that precedes this topic do not involve stochasticity. The sources of noise due to round-off er-
rors, instability of floating-point computations, or aleatory and epistemic uncertainty should be
discussed in other courses, even though they are quite frequently mentioned in online resources
about numerical algorithms and statistical learning.

3 Discussions

We conclude this paper by discussing a few aspects of how MDS fits into the learning experience
of university mathematics and the role of the Christian witness.

3.1 Student Learning Experience and Perception of Mathematics

One of the course’s philosophies is partially borrowed from Wolfram’s idea that we ought to learn
mathematics in a way, “assuming computers exist” [13]. This course encourages students to learn
mathematics with both a computational and theoretical mindset, as manual algebraic manipula-
tions give way to exploratory computations and abstract conceptual reasoning. Students expe-
rience a collaborative, cloud-based knowledge acquisition process utilizing Google Colaboratory’s
(https://colab.research.google.com/) Jupyter notebook interface [6] in class and in solving their
homework. We used it both to demonstrate mathematical facts by computations and visualiza-
tions and used uploaded images and big simulation datasets to demonstrate the practical meaning
of relevant theorems. Even students without a background in Python could appreciate how these
Jupyter notebooks function as “customized online calculators” that help them with visual intuition
and imbue a sense of connection to real-life data, thanks to a literate programming style [7]. Stu-
dents in MDS would more likely see mathematical work as a creative discovery process using a set
of abstract but powerful concepts.

3.2 Connections to Other Upper-Level Courses

As hinted in Section 2, MDS has several natural follow-up courses. More application and computation-
oriented students would benefit from taking a course in scientific computing or numerical analysis.
In contrast, more philosophically-oriented students mystified by the power of numbers to approx-
imate reality are now in a better position to understand the real line continuum, definition of
sequential convergence, and to perceive the conceptual clarity offered by the analysis of real-valued
functions. The exploration of probability and distribution in MDS would likely engender some
interest in a more rigorous coverage by a course in mathematical statistics or probability based on
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calculus. Finally, students interested in modeling natural phenomena will find a course in differen-
tial equations interesting. They are especially well-positioned to appraise the role of linearity and
linearization in a course of differential equations after MDS.

3.3 The Role of Christian Liberal Arts in Data Science

In my opinion, if a smaller institution wants to take the initiative in developing courses for data
science, fine-tuning current program offerings may be a viable alternative to creating tag-on mini-
programs dedicated to data science. It is true that more and more people are interested in data
science. Still, I observe that many good students who want some exposure to data science are not
exclusively interested in it, and MDS is a course for such students if they major or minor in mathe-
matics. Moreover, while large comprehensive universities have more resource to create courses and
hire dedicated instructors, there is likely inertia in the course structuring that resist comprehensive
changes. In such a time of change, smaller flexible departments can act like nimble “British war-
ships” if the faculty can reach a consensus faster to prevail against the “Spanish Armadas” of much
larger programs offered by public universities. Also, a Christian liberal arts institution arguably
offers better humanities training to all its undergraduates to ingrain an ethical sense and a concern
for society. A graduate that possesses a good command of mathematical and coding skills from a
liberal arts university may turn out to be a strong value proposition for prospective employers as
the integration of data-driven skills with ethical judgment is increasingly called for. We could even
imagine how a Christian data scientist could have made a difference in the debacles reported in
recent years due to the unethical abuse of data and algorithms.

3.4 Abductive Mode of Reasoning and Christian Apologetic

As an instructor and learner, the process of developing MDS shook the foundations of how I
understand scientific knowledge as a Christian educated in the modern western tradition. When
I examined the subject more closely, the tricky business I found was that data science’s dominant
mode of reasoning was different from that of pure mathematics. Some might think it is a natural
extension of statistical inference, but some philosophers of science hold a different opinion: “By
contrast, Bayesian confirmation theory makes no reference at all to the concept of explanation.” [5]

The overarching mode of reasoning identified by subject experts ([4], one of the major reference
texts used in MDS) is neither deduction nor induction, but abduction (sometimes informally called
“inference to the best explanation.”) Some philosophers of science argue that important discoveries
like Kepler’s discovery of the elliptic orbit of Mars were based on abductive reasoning [5].

As an applied mathematician trained mostly in deductive reasoning, I see this unfamiliar mode of
scientific reasoning as both a challenge and an opportunity for Christian testimony. My current
opinion is to hold an open mind that an abductive framework of reasoning could give rise to an
alternative form of Christian apologetics different from a deductive point of view [8] or an inductive
framework [3], and could be perceived in this postmodern age as a means to harmonize a rational
concept of faith and science derived from data.
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Abstract

The taxicab metric measures distance in the way that one does by walking north/south and
east/west on city blocks. Taxicab geometry is typically presented as an example of a non-
Euclidean geometry with an interesting metric in introductory courses in geometry and topology.
Much is known about taxicab geometry, beginning with the astonishing fact that taxicab circles
are squares. In this talk, we define and classify taxicab ellipses. Furthermore, we give formulas
for both the circumference and area of taxicab ellipses. The derivations of these formulas do
not require mathematical knowledge beyond Precalculus, so this research project illustrates the
accessibility of taxicab geometry to beginning researchers.

1 Introduction

1.1 What is Taxicab Geometry?

Taxicab geometry results from replacing the usual distance function with the taxicab distance
function. For points P = (x1, y1) and Q = (x2, y2), the taxicab distance from P to Q is calculated
using the taxicab distance function

dT (P, Q) = |x2 − x1| + |y2 − y1|.

As one can see, this distance function models the distance that a taxicab must travel when it moves
around on an urban street grid. For that reason, it is sometimes called the Manhattan distance;
for example, see [1].

The most popular introduction to the study of taxicab geometry appears to be the book by Krause
[5]. An exhibit at the Chicago Museum of Science and Industry curated by Karl Menger in the
1950s appears to be the first time that the geometry was called “taxicab geometry.” [3]. Martin
Gardner provided an introduction to it in one of his columns in Scientific American [2].

1.2 Previous Study of Conic Sections

Past research about taxicab geometry has largely followed some of the lines of research established
in the last chapter of Krause’s book [5]. Among the topics of study have been the conic sections.
In a series of articles in the Pi Mu Epsilon Journal, several authors studied conic sections. After
Reynolds [7] wrote an article that closely follows the development of taxicab conic sections in [5],
Moser and Kramer [6] established how to find the distance from a point to a line and determined
the general form of a parabola with a given focus and directrix.
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Iny [4] responded to Moser and Kramer by pointing out that neither Reynolds nor Moser and
Kramer provided a definition of a line. Then Iny defined a line as the set of points that are
equidistant from two given points. This definition captures all Euclidean lines but also captures
sets of points in R2 that are lines in taxicab geometry but not in Euclidean geometry. Subsequently,
Iny showed how to produce a taxicab ellipse that cannot be given by the definition given by Krause,
i.e. {P | dT (P, F1) + dT (P, F2) = n} where F1 and F2 are foci and n is a positive real number.

Although there are compelling reasons to use Iny’s definition of a taxicab line, in what follows, we
restrict our attention to taxicab lines that are also Euclidean lines.

2 Taxicab Circles

We begin by studying taxicab circles. We find formulas for their circumference and area, and we
compare those formulas with the corresponding formulas for Euclidean circles.
Definition 1. Let Q be a point in R2 and let r be a positive real number. A taxicab circle with
radius r is the set of points that are a distance r from Q, i.e. a circle is {P | dT (P, Q) = r}.

In what follows, we often refer to taxicab circles as “circles.” We revert to “taxicab circle” when
the context demands it.

In Euclidean geometry, one defines π to be the ratio of the circumference to the diameter of a circle.
We do the same for taxicab circles.
Definition 2. Suppose a taxicab circle has circumference of length C and diameter of length d.
Then

πT = C

d
.

It is an exercise in Krause’s book [5] to show that πT = 4.

2.1 Circumference

Theorem 3. The circumference of a taxicab circle of radius r is 2πT r.

To motivate the proof of Theorem 3, we find the circumference of a taxicab circle with radius 3
centered at the origin.

Figure 1: A taxicab circle of radius 3
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As noted above, a taxicab circle is actually square. In this case, each side of the square has length
3 + 3 = 6 since each side of the square covers three horizontal units and three vertical units. Thus,
the length of one side is 6. Since there are four sides, the circumference of this taxicab circle is
4 · 6 = 24 .

Proof. We start by considering a taxicab circle with radius r. We know that each taxicab circle
has four vertices that are each some distance r away from the center. These vertices are the
endpoints of four line segments, two with slope 1 and two with slope −1. Using the definition of
distance in taxicab geometry, we know that the length of one of these line segments is equal to
the distance between the two vertices that act as endpoints for that line segment. By definition of
distance in taxicab geometry, the distance between these two endpoints is the difference in their
horizontal coordinate distance plus the difference in their vertical coordinate distance. Notice that
no matter which line segment you choose, this distance will always be 2r. This is the length of one
line segment. Using the same reasoning, we see that each line segment has length 2r. Thus, the
circumference of the taxicab circle is 4(2r).

Now πT = 4, so we may replace 4 with πT . Thus, the circumference formula for a circle in taxicab
geometry is 2πT r.

We note that the circumference formula for a taxicab circle is the same as the formula for a
Euclidean circle, except that the value of π differs in the two geometries.

2.2 Area

Next, we turn our attention to the area of a taxicab circle.

Theorem 4. The area of a taxicab circle with radius r is πT r2

2 .

To motivate the proof of Theorem 4, we find the area of a taxicab circle with radius 3 centered at
the origin.

Figure 2: A taxicab circle of radius 3

Construct a square on the segment extending from the origin to (3, 0) as in Figure 2.

Then do the same for each of the other segments extending from the origin to a vertex of the
taxicab circle as in Figure 3.
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Figure 3: A taxicab circle with radius 3 along with a squared radius

Figure 4: A taxicab circle inscribed in a square with side length s = 6

We see that the area of the taxicab circle with radius 3 is half of the area in each of the four squares
that were constructed. Since each square has area 3 · 3 = 9, the total area of the taxicab circle is
1
2(4)(3)(3) = πT · 32

2 = 18. Note the use of πT = 4. It is used again in the proof of Theorem 4.

Proof. Consider a taxicab circle with radius r centered at the origin. Construct a square on each
of the 4 segments that extend from the origin to a vertex of the taxicab circle. This construction
produces 4 squares of area r2 and a large square with side length 2r. Moreover, each of the smaller
squares is divided into two congruent right triangles by a side of the taxicab circle. In each pair of
congruent right triangles, one triangle contributes area to the taxicab circle. Thus, the area of the
taxicab circle is the area of the larger square minus the area of four of the congruent right triangles:

(2r)2 − 4
(1

2

)
(r)(r) = 4r2 − 2r2 = 2r2.

Since πT = 4, we now have the area formula for a circle in taxicab geometry:

A = πT r2

2 .

Thus, we see that the expression for the area of a taxicab circle is 1
2 times the expression for the

area of a Euclidean circle.
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3 Taxicab Ellipses
Taxicab ellipses are not as well-studied as taxicab parabolas. They are unlike Euclidean ellipses
in several different ways. For example, they may have different shapes depending on the relative
location of the foci. More surprisingly, although there is no known closed-form formula for the
perimeter of a Euclidean ellipse, we provide an explicit formula for the perimeter of a taxicab
ellipse below.

Following the lead of [5], we make the following definition.
Definition 3. A taxicab ellipse E is given by

E = {P | dT (P, F1) + dT (P, F2) = n},

i.e., a taxicab ellipse is the locus of points P for which the sum of the distance from P to a focus
F1 and the distance from P to a focus F2 is constant. We note that in order to have a non-empty
set of points, one must choose n so that n > dT (F1, F2). We call n the distance sum of E, and
we call dT (F1, F2) the focal distance of E.

3.1 Possible Shapes

We begin our study of taxicab ellipses by noting that they may have two distinct Euclidean shapes.
Theorem 5. Let F1, F2 be points in R2, and let n > dT (F1, F2). Suppose E = {P | dT (P, F1) +
dT (P, F2) = n} is a taxicab ellipse. If F1 and F2 lie on a horizontal or vertical line, then E is a
hexagon. Otherwise, E is an octagon.

The proof of Theorem 5 is omitted. However, one may convince oneself of its truth by drawing
several examples using graph paper.

Figures 5a and 5b illustrate the two possible shapes of a taxicab ellipse.

FF11 FF22

(a) Taxicab ellipse with a hexagon shape

FF11

FF22

(b) Taxicab ellipse with an octagon shape

Figure 5: Taxicab ellipses with different shapes

In the case that a taxicab ellipse is an octagon, one may choose an alternative set of foci that
produce the same ellipse.
Lemma 1. Suppose E is a taxicab ellipse with distance sum n and with foci F1 and F2 that do not
lie on the same horizontal or vertical line. Then there exist points G1 and G2 such that the ellipse
produced by using G1 and G2 as the foci and n as the distance sum is the same as E.
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Proof. Suppose E is a taxicab ellipse with foci F1 and F2 that do not lie on the same horizontal or
vertical line. Let F1 = (x1, y1) and let F2 = (x2, y2). Let G1 be the point that lies at the intersection
of the vertical line passing through F1 and the horizontal line passing through F2. Similarly, let G2
be the point that lies at the intersection of the horizontal line passing through F1 and the vertical
line passing through F2. Then G1 = (x1, y2) and G2 = (x2, y1).

Let n be the distance sum of E. Consider the ellipse E∗ formed by using G1 and G2 as foci
with distance sum n. We claim that E = E∗. First, note that we may write dT (F1, F2) =
|x1 − x2| + |y1 − y2|. Now

dT (G1, G2) = |x1 − x2| + |y2 − y1| (1)
= |x1 − x2| + |y1 − y2| (2)
= dT (F1, F2), (3)

so the distance between G1 and G2 is the focal distance of E.

Let P = (p, q) be a point on E∗. We next show that dT (P, F1)+dT (P, F2) = n. This is accomplished
by using the coordinates of all of the points involved:

dT (P, F1) + dT (P, F2) = |p − x1| + |q − y1| + |p − x2| + |q − y2| (4)
= |p − x1| + |q − y2| + |p − x2| + |q − y1| (5)
= dT (P, G1) + dT (P, G2) (6)
= n. (7)

Thus, every point on E∗ is also a point on E. A similar argument shows that if Q is a point on E,
then Q is also a point on E∗. Hence, E = E∗. Given the distance sum n, we may use either F1
and F2 or G1 and G2 as the foci of E.

3.2 Perimeter

We are now ready to give the formula for the perimeter of a taxicab ellipse.

Theorem 6. Suppose F1 and F2 are points in R2. Let n > dT (F1, F2). Suppose E = {P | dT (P, F1)+
dT (P, F2) = n} is a taxicab ellipse. Then the perimeter of E is

4n − 2dT (F1, F2) = πT n − 2dT (F1, F2).

Proof. Suppose E = {P | dT (P, F1) + dT (P, F2) = n} is a taxicab ellipse. There are two cases to
consider with respect to the relative locations of F1 and F2.

Case 1: Suppose F1 and F2 lie on the same horizontal or vertical line. Let l be the line that
contains F1 and F2. Now E is a hexagon, so E consists of six line segments. We may divide these
six line segments into two sets; call them S1 and S2.

S1 contains two line segments that are parallel to l and have length dT (F1, F2). Thus, the line
segments in S1 contribute 2dT (F1, F2) to the perimeter of E.

S2 contains four line segments. They may be grouped into pairs accordingly to their slopes. In one
pair, each line segment has slope 1, while in the other pair, each line segment has slope −1. Notice
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that the line segments in S2 may be rearranged to form a taxicab circle. Let r be the radius of this
taxicab circle. By Theorem 3, the line segments in S2 contribute 2πT r to the perimeter of E.

It remains to show that r = n − dT (F1, F2)
2 . Let P be an endpoint of one of the line segments in

S2. Now dT (P, F1) ≤ dT (P, F2) or dT (P, F2) ≤ dT (P, F1). Without loss of generality, suppose that
dT (P, F1) ≤ dT (P, F2). Let r = dT (P, F1). Then dT (P, F2) = r + dT (F1, F2). From the definition
of E, we have

dT (P, F1) + dT (P, F2) = n.

Substituting in the left-hand side of this equation, we obtain

dT (P, F1) + dT (P, F2) = n

r + (r + dT (F1, F2)) = n

2r + dT (F1, F2) = n

2r = n − dT (F1, F2)

r = n − dT (F1, F2)
2 .

We have established that the two line segments in S1 contribute 2dT (F1, F2) to the perimeter of

E, while the four line segments in S2 contribute 2πT

(
n − dT (F1, F2)

2

)
to the perimeter of E. It

follows that the perimeter of E is given by

2πT

(
n − dT (F1, F2)

2

)
+ 2dT (F1, F2).

Case 2: Suppose that F1 and F2 lie on neither the same horizontal line nor the same vertical line.
Then E is an octagon, and E consists of eight line segments. We may divide these line segments
into two sets as we did in case 1; call the two sets S3 and S4.

S3 contains four line segments that are parallel to the coordinate axes. In particular, two segments
are parallel to the x-axis, while two segments are parallel to the y-axis. Form two pairs of segments
so that in each pair, there is a segment that is parallel to the x-axis and a segment that is parallel
to the y-axis. In each pair, the total length of the two segments is dT (F1, F2) by the definition of
taxicab distance. Since there are two such pairs of segments in S3, the segments in S3 contribute
2dT (F1, F2) to the perimeter of E.

Next, we consider the line segments in S4. They have the same properties as the segments in
S2 in the proof of Case 1. Thus, we may use a similar argument to show that they contribute
2πT

(
n − dT (F1, F2)

2

)
to the perimeter of E. One important difference in the argument presented

below is that one must account for two additional points that are each closest to one of the segments
in S4.

To begin, we add two additional points to our discussion. Let G1 be the point that lies at the
intersection of the vertical line passing through F1 and the horizontal line passing through F2.
Similarly, let G2 be the point that lies at the intersection of the horizontal line passing through
F1 and the vertical line passing through F2. Then by Lemma 1, the distance from F1 to F2 is the
same as the distance from G1 to G2.
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We claim that it is possible to rearrange the segments in S4 into a (Euclidean) square. Toward
that end, we first note that two of the segments in S4 have (Euclidean) slope 1, while the other two
segments in S4 have (Euclidean) slope −1. Each of the segments is closest to exactly one of the
points in {F1, F2, G1, G2}. Suppose S is the segment in S4 that is the closest to F1. Let P be one
of the endpoints of S, and let r = dT (P, F1). Then dT (P, F2) = r + dT (F1, F2). By using a chain of
reasoning similar to that used in Case 1, we obtain

r = n − dT (F1, F2)
2 .

One may use a similar argument to establish this value of r for points on each of the remaining three
segments. For the segment closest to G1 and the segment closest to G2, one must use the identity
dT (F1, F2) = dT (G2, G1) to get the same result. Thus, one can construct a taxicab circle of radius

r = n − dT (F1, F2)
2 from the segments in S4. Then Theorem 3 tells us that the circumference of

that circle is 2πT

(
n − dT (F1, F2)

2

)
.

In conclusion, we have established that the four line segments in S3 contribute 2dT (F1, F2) to

the perimeter of E, while the four line segments in S4 contribute 2πT

(
n − dT (F1, F2)

2

)
to the

perimeter of E. It follows that the perimeter of E is given by

2πT

(
n − dT (F1, F2)

2

)
+ 2dT (F1, F2).

The resulting expression simplifies to

4n − 2dT (F1, F2) = πT n − 2dT (F1, F2)

as claimed.

3.3 Area

Next, we present the area formula for a taxicab ellipse.

Theorem 7. The area of a taxicab ellipse with foci F1 = (x1, y1) and F2 = (x2, y2), distance sum
n, and focal distance dT (F1, F2) is

n2 − dT (F1, F2)2

2 + |x1 − x2||y1 − y2|.

In the proof of this theorem, we first calculate the area of a rectangle that contains the ellipse and
then subtract the area of a taxicab circle created by the excess. Figures 6a and 6b illustrate the
situation.

Proof. Suppose E is a taxicab ellipse with foci F1 = (x1, x2) and F2 = (x2, y2), distance sum n, and
focal distance dT (F1, F2). Without loss of generality (by Lemma 1), suppose x1 ≤ x2 and y1 ≤ y2.

Let r = n − dT (F1, F2)
2 as in the proof of Theorem 6.
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(a) Taxicab ellipse with a hexagon shape (b) Taxicab ellipse with an octagon shape

Figure 6: Taxicab ellipses with bounding rectangles

To calculate the area AE of E, we begin with an overestimate. Consider the rectangle BCDF with
vertices at

B = (x1 − r, y1 − r), C = (x1 − r, y2 + r), D = (x2 + r, y2 + r), and F = (x2 + r, y1 − r).

Notice that rectangle BCDF contains E and that its area is given by

ABCDF = (2r + |x1 − x2|)(2r + |y1 − y2|)
= 4r2 + 2r(|x1 − x2| + |y1 − y2|) + |x1 − x2||y1 − y2|.

Recall that dT (F1, F2) = |x1 − x2| + |y1 − y2|. It follows that

ABCDF = 4
(

n − dT (F1, F2)
2

)2
+ 2

(
n − dT (F1, F2)

2

)
dT (F1, F2) + |x1 − x2||y1 − y2|

= 4
(

n2 − 2ndT (F1, F2) + dT (F1, F2)2

4

)
+ (n − dT (F1, F2))dT (F1, F2) + |x1 − x2||y1 − y2|

= n2 − 2ndT (F1, F2) + dT (F1, F2)2 + ndT (F1, F2) − dT (F1, F2)2 + |x1 − x2||y1 − y2|
= n2 − ndT (F1, F2) + |x1 − x2||y1 − y2|.

Now to correct the overestimate to the correct value of the area of E, we notice that the area of E
is the area of rectangle BCDF minus the area of a taxicab circle of radius r. One can form this
taxicab circle of radius r by joining four congruent right triangles from the corners of rectangle
BCDF . Each right triangle has legs of taxicab length r and a hypotenuse of taxicab length 2r that
lies on a line with slope 1 or −1.

By Theorem 4, the area of the taxicab circle formed by the four congruent right triangles is πT r2

2 .
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Since r = n − dT (F1, F2)
2 , the area of E is:

AE = n2 − ndT (F1, F2) + |x1 − x2||y1 − y2| − 2
(

n − dT (F1, F2)
2

)2

= n2 − ndT (F1, F2) + |x1 − x2||y1 − y2| − 2
(

n2 − 2ndT (F1, F2) + dT (F1, F2)2

4

)

= n2 − ndT (F1, F2) + |x1 − x2||y1 − y2| − n2 − 2ndT (F1, F2) + dT (F1, F2)2

2

= n2 − ndT (F1, F2) + |x1 − x2||y1 − y2| − n2

2 + ndT (F1, F2) − dT (F1, F2)2

2

= n2

2 − dT (F1, F2)2

2 + |x1 − x2||y1 − y2|

= n2 − dT (F1, F2)2

2 + |x1 − x2||y1 − y2|.

4 Future Work

We note two intriguing directions for future work. First, as mentioned in Section 1.2, the results
produced above assume that all lines are Euclidean lines. However, if one takes Iny’s definition of a
line in [4], then there are taxicab lines that are not Euclidean lines. One might extend the present
investigation by determining whether and how to modify the theorems presented here using Iny’s
definition of a line.

Second, we believe that it may be possible to find equation(s) for a taxicab ellipse. As is well-
known, a Euclidean ellipse centered at the origin with horizontal semi-major axis of length a and
vertical semi-minor axis of length b has equation

x2

a2 + y2

b2 = 1.

Based on our investigations, it appears that it may be possible to express the linear segments that
make up a taxicab ellipse using its focal distance dT (F1, F2) and distance sum n. Rosen gives an
equation for a taxicab ellipse with foci located at (−a, 0) and (a, 0), where a is a positive integer
[8]. Perhaps a more general equation may be found.
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Banquet Tributes and the Brabenec Lectureship

For the past several conferences ACMS has honored long-standing members at the conclusion of
its Friday evening banquet. This year two tributes were given to those who, though “absent from
the body,” we trust are now “present with the Lord,” namely, Alice Iverson and Gene Chase. In
addition, a special tribute was prepared for Robert Brabenec, founder of ACMS, who was present at
the conference, but who had recently stepped down from his role of Executive Secretary. A lecture
series was also created in Bob’s honor. This section contains the remarks that were prepared for
Alice, Gene, and Bob, followed by a brief description of the Brabenec Lectureship.

Tribute to Alice Iverson (Prepared by Dave Klanderman)

Alice Iverson (January 26, 1924–June 22, 2020) served as a mathematics pro-
fessor at North Park College (later renamed North Park University) in Chicago,
Illinois for 48 years. Her academic leadership extended for over three decades.
She was the first woman to chair the Division of Science and Mathematics,
and the chairperson of the Committee to Introduce Computer Science Major
to North Park College. Having earned her master’s degree in mathematics
from Northwestern University, she never wavered in support for women in sci-
ence, technology, engineering, and the mathematical science. A lifelong learner,
she spent many years exploring the United States with her husband (Marvin)
and children (Carol and Keith). She loved religious history, and was always open to new ideas,
approaches, and insights. She cared for all living things—especially plants, of which she had many!

Alice was a longtime member of ACMS, and served on the ACMS Board from 1995 to 1999. She
was Vice President from 1995 to 1997, and President from 1997 to 1999. In fact, she was the
first of four women who served as ACMS President. I first met her at the 1991 ACMS Biennial
Meeting at Wheaton College. I later saw Alice at annual meetings of the mathematics division
of the Associated Colleges in the Chicago Area (ACCA) as well as additional ACMS conferences.
Each time I met her, she greeted me warmly and made me feel welcome in these academic settings.

In addition to supporting women in the fields of science, technology, engineering, and (in particular)
the mathematical sciences, Alice was a tremendous role model for them. One of my longtime
colleagues at Trinity Christian College—and an alumna of North Park College, Dr. Mary Webster
Moore—considers Alice a mentor who influenced her decision to pursue a career in mathematics
education. Mary noted that she contacted Alice when she completed her doctoral degree, and Alice
offered her words of congratulations and encouragement. The timeline of Alice Iverson’s long career
at North Park closely paralleled that of Rich Kooy, my departmental colleague who retired shortly
after I arrived at Trinity. He mentioned speaking and working with Alice at some of these same
conferences and meetings during several decades.

Alice was an active member of Ravenswood Presbyterian Church in Chicago, Illinois.
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Tribute to Gene Chase (Prepared by Calvin Jongsma)

I don’t recall how Gene Chase and I initially met, but it was likely at the first
ACMS conference, which we both attended in 1977. The brainchild of Bob
Brabenec, the goal of that conference was to explore a Christian perspective
on the foundations of mathematics. As background reading, Bob had com-
piled a list of nine books and articles dealing with the integration of faith and
mathematics, and he offered to send copies of these out at cost to whoever was
interested. Reflecting on this, I proposed to Bob that setting up a clearinghouse
for collecting and disseminating these sorts of materials could be a good way to
facilitate an ongoing dialogue on the topic, and that an annotated bibliography
of Christianity and mathematics might be a good first step.

Gene and I were both interested in such a venture. Gene had developed a reading list for his senior-
seminar students at Messiah, and I was keen on analyzing the different approaches to relating
Christianity and mathematics, which then became the basis of a talk I gave at the Pittsburgh
Coalition’s 1980 Jubilee Conference. Bob initially hoped that a bibliography might materialize at
the 1978 Working Conference convened to plan the following year’s ACMS conference, but Gene
was unable to attend. The two of us were instead commissioned by participants at the 1979 ACMS
conference to compile such a bibliography. I wrote up a brief prospectus, which was appended to
the conference proceedings, and we asked for participants’ assistance in suggesting materials for us
to include.

With naïve optimism, we projected that this could probably be done in rela-
tively short order. Gene and I were aware of more works than were on Bob’s
list, but we had no idea just how many items we might find on the topic. We
scoured library resources and wrote to academics across the world for informa-
tion to assist us—this, incidentally, was before the internet or search engines
existed, and before email became an accessible means of communication! Gene
and I were surprised to discover far more materials addressing this topic than
we had expected, certainly more than would fit on a simple xeroxed handout.
Gene sent a pre-publication, computer-generated draft of our work to Bob,
which he included as an appendix to the proceedings of the 1981 ACMS Conference, but our ulti-
mate goal was to produce an inexpensive ($2/copy), nicely-formatted, stand-alone pamphlet. This
was finally ready in June 1983. Our Bibliography of Christianity and Mathematics: 1910—1983
catalogued and annotated around 300 items, including a number of things that had been generated
in the meantime by speakers at the first four ACMS conferences.

I began my career at Dordt in 1982, so I was soon consumed by the demands of teaching. Like
Gene, I required students to develop their ideas on the relationship between Christian faith and
mathematics. I did so in a capstone history of mathematics course I taught on an alternate year
basis. But the bibliography project per se was no longer a front-burner concern for me, due largely
to institutional assignments and writing projects. Gene and I continued to see one another at
ACMS conferences, however, and we occasionally shared information by mail about new items we
came across that should be included in a second edition of our Bibliography.

Gene’s interest in the Bibliography never flagged. He was actively at work revising the Bibliography
in 1990 in response to an ACMS Board request. He devoted sabbatical time around then working
on a second edition; my contribution was mainly giving feedback to his work and forwarding some
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newly annotated items. Gene hoped to expand the Bibliography backward in time to include
writings prior to the 20th century, and he undertook a study of philosophers and mathematicians
whose theological ideas influenced their view of mathematics. He gave an ACMS talk on this topic
in 1991, projecting that a second edition might be ready for publication by 1992 or 1993, although
that did not materialize.

The next time I heard from him about the bibliography project was some ten years later. Gene’s
proposal for another sabbatical in 2004/2005 was to include revising and expanding the Bibliogra-
phy. Not having a matching sabbatical, I offered to give him input and feedback as time permitted,
but I was unable to provide any substantial assistance. Gene’s report on his work at the 2005 ACMS
Conference, which I was unable to attend, reads like a draft introduction to a second edition of the
Bibliography, but I did not learn what the final outcome of his work was. Once again, I was heavily
committed to other projects and responsibilities that demanded my time and energy.

Gene retired from Messiah in the early 2010s; I followed suit a few years later. In 2019 I belatedly
reached out to Gene to see what state the Bibliography was in and whether he would be interested
in collaborating on a new edition. Gene’s response was rather tentative: “Yes. But not in a rush,
just as I have time.” I was busy working on a major writing project, so I too was not in a real rush
to start. Then in September, 2020, I received the sad news that Gene had died after a three-week
battle with COVID-19.

That seemed to put an end to cooperating on a second edition of the Bibliography, but in email
exchanges over subsequent months with Gene’s wife Emily and his son John, the three of us managed
to decipher which of Gene’s boxes of materials and computer files might be pertinent to a future
edition. Consequently, I now have a raft of digital material related to this: about 1500 files, 2 GB
of data. I have not had time to delve very far into this material to know everything it contains, so
I can’t predict what might result from it. But if a second edition finally does see the light of day, it
will be based on the work Gene put into it over the years, and it will still be a truly collaborative
effort.

Since the first edition of our Bibliography, the nature and availability of documents treating the topic
of Christianity and mathematics have changed dramatically. Many materials are now more readily
available online, but they are also more ephemeral. What should a new edition of the Bibliography
include? Gene wished to include materials from earlier eras, and ACMS has become more inclusive
over the years by focusing on computer science and statistics as well as mathematics. Is such an
expansion of the Bibliography wise or feasible? And what format should be used at a time that is
far more digital than when the Bibliography first came out? Moving to a second edition will require
substantial logistical and editorial rethinking. This task may be more than I can commit to and
accomplish on my own, so—assuming there’s sufficient interest in a second edition—I’ll welcome
serious input from other ACMS members.

Gene’s academic work was always one of service to God, his students, and his colleagues, and his
intellectual passion was to promote the development of Christian perspectives on various aspects
of the field. His contributions to the ACMS have been much appreciated and, God willing, may
still bear fruit into the future.
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Tribute to Bob Brabenec (Prepared by Russell Howell)

As you all know, Robert L. Brabenec has a long-standing passion
for the history and context of mathematics, and the great Swiss
mathematician Leonhard Euler is someone he admires—not only for
his mathematics, but especially for his character. In that regard, I
think that one of the finest tributes to Euler came in 1783 from the
Marquis of Condorcet, a French mathematician and philosopher who
worked not only with Euler, but also with Benjamin Franklin: “He
preferred instructing his pupils to the little satisfaction of amazing
them.” Of course, anyone who knows Bob would say something
similar: “He prefers instructing his pupils to the little satisfaction
of amazing them.” Note the switch to the present tense. Even though retired, Bob continues to
instruct, and in many ways we are all his pupils.

But how does Bob instruct us? Ironically, the way Bob instructs his pupils has the effect of their
being amazed by him. I could list his many accomplishments: receiving teaching awards from
Wheaton, and the Illinois Section of the MAA; author of a book in real analysis, and a subsequent
MAA publication on resources for that subject; founder of the ACMS . . . The list goes on and on,
but I would like to suggest that we can see how Bob instructs us by modifying the original Euler
tribute just a bit: He prefers serving his pupils to the little satisfaction of serving himself.

We all have to write letters of recommendation, but Bob went out of his way to serve me by writing
several important letters completely unrelated to recommendations. He penned the first during
my senior year at Wheaton. The Vietnam War was at its peak. I had gone through the ROTC
program, and my application to delay entry into the Army until completing graduate school was
denied. Bob took it upon himself to write a letter to the National Association of Evangelicals to
see if they could sway some influence in getting the decision reversed. One can never be sure what
levers of government resulted in such a reversal, but it came just two days before commencement.
For sure my career path would have been completely different otherwise, and may very well not
have involved any graduate education.

Then, during my first year at The Ohio State University, I got a letter out of the blue from Bob. I
sill have it. In the second paragraph he said, “Graduate school can be a very narrowing experience.
I’d recommend that you consider the following books for reading that can help provide a wider,
richer context for mathematics.” And in that letter Bob went well beyond just giving advice. A
sentence later on illustrates that history sometimes repeats. He wrote, “I felt bad when I watched
Michigan beat Ohio State in football.” I wonder, how many times have I taken the initiative to
write to alumni without their first writing me?

Bob’s service extends well beyond his own students. He is the founder of the “Wheaton Cares”
program, which involves students from a variety of majors meeting in his home once per week to
write cards of encouragement to fellow students who are going through difficult times, and to pray
for them. Time limits my talking about other kinds of involvement with students, but I must share
the judgment of Mary Vanderschoot, chair of Wheaton’s mathematics department. I was in an
email exchange with her in 2013 about a planned gathering during homecoming to honor Bob for
completing 50 years of teaching at Wheaton. I was not able to make it, and asked whether there
was anything brewing for celebrating his retirement. Here is what she wrote: “We will certainly
plan something special for his retirement – I’m not sure when that will be. I think Bob wants to
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continue teaching for another year or so.” Okay, Mary, you were only off by about seven years! But
listen to what she wrote next: “He is more involved with student ministry than anyone I know.”

The serving in which Bob engages takes on a variety of forms, and
crosses many generations. In 2008 I was honored when he invited
me to join him, Dick Stout, and Wheaton student Jesse Liebe for a
month of research in Cambridge, England. We stayed at Hawthorne
House, a facility that is owned by Wheaton College. Bob insisted on
paying for its rental. The picture you see is one that a passerby took
of us one day. I can’t remember where we were going, but evidently
Bob and Dick were headed to a twin primes dress-alike contest! Jesse
is now a lawyer, and it didn’t surprise me when I found out that, in 2011, he invited Bob to his
wedding in North Carolina. Of course, it was also not surprising to learn that Bob went.

I’ve wondered how I should sum up a thank-you to Bob besides the nerdy way I did at the conclusion
of a visit to Wheaton in 2003 in response to an invitation to give some talks. I wrote on a chalk
board, “Bob,

∫ q
0 sec2, Russ.” Yeah, that equals tan q − tan 0 = tan q. Indeed, “tan q,” Bob, for your

investment in my life, for both inspiring and amazing me. I count it a rich blessing to continue to
be your pupil, and for many years to have been your colleague. As a final thought, let me share an
inscription. Its application to Bob can aptly come from us all.

Bob loves the UK, with its rich traditions, and the stunning architecture in Cambridge. In London,
there are the fabulous structures designed by Christopher Wren. One of Wren’s masterpieces is
Saint Paul’s Cathedral. Located in the crypt below Saint Paul’s is Wren’s tomb, with a Latin
inscription that translates, “He lived beyond the age of ninety, not to himself but for the public
good.” Now, this is a tribute to Bob, not a memorial service, and we all hope that he will live
beyond the age of ninety, though he certainly has lived “not to himself, but for the public good.”

It is the second half of Wren’s inscription that is most applicable
to Bob. To set the stage for it, let me show you a picture that
was taken yesterday during lunchtime. On the right is Bob, who,
when I was his advisee, chaired Wheaton’s mathematics department.
Coincidentally, I now happen to be chair of Westmont’s mathematics
department, and pictured to the left of me is Mary Vanderschoot,
who is one of my former advisees. She is now chair of Wheaton’s
mathematics department. To the left of Mary is one of her former
advisees, Anna Aboud, who next term is slated to be chair of Westmont’s mathematics department!

To the elucidate the rest of Wren’s inscription let me ask a favor of everyone here. If you were a
student of Bob at Wheaton, would you mind standing up? Now, if you were a student of a student
of Bob at whatever institution, would you please stand? Finally, if your life has been enriched by
Bob, either directly or indirectly, would you please stand?

The remaining portion of Wren’s inscription reads “Lector, si monumentum requires, circumspice.”
That translates to “Reader, if you seek his monument, look around.” When you look around London
you can truly see Wren’s monuments in the form of striking architectural wonders. That same
inscription applies to Bob, but the monuments are people. Bob, we know you do not nor never will
seek monuments, but you actually already have them in abundance—just look around. Thank you
for modeling what it means to be a great teacher, colleague, and friend. Please hear and accept from
us now the sound that symbolizes our deepest thanks, respect, admiration, and—yes—amazement.
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The Brabenec Lectureship

As a final gesture of appreciation for Robert Brabenec’s many years
of service, the ACMS Board announced the establishment of the
Brabenec Lectureship, with funds that will allow an ACMS member
to serve as the Brabenec Lecturer for an academic year. The Board
solicits nominations for this position. Institutions will then submit
applications to the Board with the request that the lecturer visit
their campuses to deliver a talk dealing with faith-integration issues,
and possibly additional lectures on mathematical topics. Priority
will be given to institutions that do not normally have funding for
outside speakers. Russell Howell, pictured to the right of Bob Brabenec, was selected as the first
holder of the Brabenec Lectureship position. A full description of this program can be found at
https://acmsonline.org/brabenec-lectureship/.
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Appendix 1: Conference Schedule

Monday, May 30
6:00–8:00 pm Off-campus dinner for pre-conference attendees

Tuesday, May 31
7:30–8:30 am Breakfast (1899 Dining Hall)

9:00–12:00 pm

Pre-Conference Workshops 1 (Wilden 102, 103)
– Mathematics in Context: Its History, Philosophy, and Connections with the Christian Faith

(Organizers: Bob Brabenec, Russell Howell, Dick Stout, Dusty Wilson)
– Integrating Ethics into Your Statistics and Computer Science Courses: Integrated Ethics Labs

(Organizers: Lori Carter, Catherine Crockett, Stacy DeRuiter)
12:00–1:00 pm Lunch (1899 Dining Hall)
1:00–4:00 pm Pre-Conference Workshops 2 (Wilden 102, 103)
5:00–6:00 pm Dinner (1899 Dining Hall)
5:15–11:30 pm Optional Dodgers/Pirates game
6:30–9:30 pm Informal Social Gathering (President’s Dining Room)

Wednesday, June 1
7:30–8:30 am Breakfast (1899 Dining Hall)
9:00–12:00 pm Pre-Conference Workshops 3 (Wilden 102, 103)
12:00-1:00 pm Lunch (1899 Dining Hall)
2:30–4:30 pm Reception at the home of Francis, Natalie, and Nathanael Su (Pasadena)
5:30–6:30 pm Dinner (1899 Dining Hall)

7:00–7:45 pm

Opening Session (Wilden Lecture Hall)
– Welcome: Dave Klanderman
– Azusa Pacific University Provost Greeting: Rukshan Fernando
– Introductions, Devotional, and Announcements: Bryant Mathews

7:45–8:45 pm Plenary 1: Matt DeLong (Wilden Lecture Hall)
Saving Beauty: On Myshkin, Misery, Meaning, and Mathematics

8:45–9:15 pm Refreshments (Wilden Atrium)
9:00–11:00 pm Informal Social Gathering (President’s Dining Room)

Thursday, June 2
7:00–7:30 am Morning Prayer: Kristin Camenga (Wilden Lecture Hall)
7:30–8:30 am Breakfast (1899 Dining Hall)

8:40–9:00 am
Preparatory Session (Wilden Lecture Hall)
– Devotional: Derek Schuurman
– Announcements: Bryant Mathews

9:00–10:00 am Plenary 2: Jason Thacker (Wilden Lecture Hall)
Ethics in the Age of AI: Navigating Emerging Technologies with Biblical Wisdom

10:00–10:30 am Refreshments (Wilden Atrium)
10:30–11:55 am Parallel Contributed Presentations 1 (Wilden 102, 103, 104, Lecture Hall)
12:00–1:00 pm Lunch (1899 Dining Hall)
1:30–3:25 pm Parallel Contributed Presentations 2 (Wilden 102, 103, 104, Lecture Hall)
3:30–4:00 pm Refreshments (Wilden Atrium)
4:00–5:55 pm Parallel Contributed Presentations 3 (Wilden 102, 103, 104, Lecture Hall)
6:00–7:00 pm Dinner (1899 Dining Hall)

7:15–8:15 pm Plenary 3: Talithia Williams (Wilden Lecture Hall)
Power in Numbers: The Rebel Women of Mathematics

8:15–11:00 pm Informal Social Gathering (President’s Dining Room)
8:30–11:00 pm Choir Practice: Karl-Dieter Crisman (Wilden Lecture Hall)
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Conference Schedule (Continued)

Friday, June 3
7:00–7:30 am Morning Prayer: Kristin Camenga (Wilden Lecture Hall)
7:30–8:30 am Breakfast (1899 Dining Hall)

8:40–9:00 am
Preparatory Session (Wilden Lecture Hall)
– Devotional: Kristin Camenga
– Announcements: Bryant Mathews

9:00–10:00 am Plenary 4: Talithia Williams (Wilden Lecture Hall)
Scam or Scriptural: Could Plant-Based Diets Be God’s Healing Mechanism?

10:00–10:30 am Refreshments (Wilden Atrium)
10:30–11:45 am Parallel Contributed Presentations 4 (Wilden 102, 103, 104, Lecture Hall)
11:45–12:45 pm Lunch (1899 Dining Hall)
12:45–4:15 pm Excursions (Huntington and Norton Simon Museums)

5:00–6:00 pm Plenary 5: Jason Thacker (Wilden Lecture Hall)
Always Known, but Rarely Loved: Facial Recognition Technology and the Nature of Privacy

6:10–6:20 pm Group Photo
6:30–8:00 pm ACMS Business Meeting and Banquet (Upper Turner Campus Center)
8:00–8:45 pm Honorees (Upper Turner Campus Center)
8:45–11:00 pm Informal Social Gathering (President’s Dining Room)
9:00–10:00 pm Choir Practice: Karl-Dieter Crisman (Wilden Lecture Hall)

Saturday, June 4
7:30–8:30 am Breakfast (1899 Dining Hall)
8:50–9:00 am Announcements: Bryant Mathews (Wilden Lecture Hall)
9:00–9:20 am ACMS Business Meeting (Wilden Lecture Hall)

9:20–10:20 am Plenary 6: Matt DeLong (Wilden Lecture Hall)
Child’s Play: Mathematical Exploration and Exposition at MathPath

10:20–11:00 am Refreshments (Wilden Atrium)
11:00–12:00 pm Worship Service: Josh Wilkerson, Karl-Dieter Crisman (Wilden Lecture Hall)
12:00-1:00 pm ACMS Board Meeting (outside tables during lunch)
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Parallel Session Schedule

Thursday, June 2
Session 1 Wilden 102 Wilden 103 Wilden 104 Lecture Hall
10:30–10:55 Michael Veatch

International vaccine
allocation models

Christina Osborne
The First Step Towards
Higher-Order Chain
Rules for Abelian
Calculus

Sarah A. Nelson
Innovative Assessments
via Creative Projects

Ricardo Cordero-Soto
Restoring Faith: A
Philosophy and Model
for Faith Integration in
Mathematics

11:00–11:15 Kevin Vander Meulen
Geometry as a
Playground for
Expanding Our
Horizons: A review

Samuel Alexander
Formal Differential
Variables and an
Abstract Chain Rule

India White
Cultural Competency:
Providing Equitable
Math Instruction through
Cultural Relevance

Bradley McCoy
Thematic Approach to
Program-Level Faith
Integration Curriculum

11:20–11:35 Adam Goodworth,
Russell Howell
Complex Analysis,
Stability, and Cerebral
Palsy

Jesús Jiménez
Fibonacci-Type
Identities for
Second-Order Linear
Recurrences

Amanda Harsy,
Sarah Klanderman,
Marie Meyer,
Michael Smith,
Brittany Stephenson,
Cara Sulyok
Surviving a Pandemic
Using Alternate
Assessments

Cory Krause
Reflections on Maddy’s
Naturalized
Epistemology of
Mathematics

11:40–11:55 Esther Lee,
Lisa Hernández
TDA and the Housing
Market

Joseph DiMuro
PreTeXt for Accessible
Math Documents

Rachel Grotheer
To Grade or not to
Grade: Testing the
Waters of “Ungrading”

David Freeman
A Belief Expressionist
Explanation of Divine
Conceptualist
Mathematics

Session 2 Wilden 102 Wilden 103 Wilden 104 Lecture Hall
1:30–1:55 Ken Arnold

AI and writing:
Laziness or
thoughtfulness?

Francis Su
The Game of Cycles

Adam Hammett
How to Discover (ALL)
Divisibility Tests

Ricardo Cordero-Soto
Discovered or Invented:
The Ontology of
Mathematics

2:00–2:15 Kari Sandouka
Engaging the Imperial
Army

Bryant Mathews
The Game of Cycles on
Spiders and Hammocks

Kristin A. Camenga
A First Attempt at a
Corequisite Course for
Calculus I

Daniel Rodman
God and Mathematical
Platonism

2:20–2:35 Derek Schuurman
A Christian Field Guide
to Technology for
Engineers and Designers

Karl-Dieter Crisman
Voting on Cyclic
Orders: Results and
Ideas in Undergraduate
Research

Chris Cyr
Partnered
Problem-Solving as a
Gateway to Active
Learning

Chad Mangum
Circular Reasoning in
Theology and its
Intersections with
Mathematics

2:40–2:55 Benjamin Mood
Reflections on Group
Programming Projects
in Computer Science
Classes

Nicholas Zoller
Ellipses in Taxicab
Geometry

Shawn Wirts
Student Support in
Gateway Mathematics
Courses: Academic
Intercession

Matt Lunsford
A Tale of Two Mentors:
G.H. Hardy and
C.S. Lewis
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Parallel Session Schedule (Continued)

Thursday, June 2
Session 3 Wilden 102 Wilden 103 Wilden 104 Lecture Hall
3:00–3:25 Victor Norman

Using POGIL to
Enhance Engagement
and Improve
Understanding in the
Classroom

Bryan Dawson
The nearly Universal,
Easy-to-Use Level
Comparison Test for
Series

Judith Canner
Threshold Concepts in
Quantitative Reasoning:
Development and
Impact

Andrew Simoson
A homily on Hardy’s
Apology

4:00–4:25 Jeffrey H. Green,
Marian Zaki
Rethinking the Software
Engineering Code of
Ethics Using a Biblical
Worldview Lens

Troy Riggs
Why Save the Best for
Last? Introducing
Calculus through
Asymptotics

Saburo Matsumoto
Mourning of a
Mathematician

Jason Ho,
Dave Klanderman,
Sarah Klanderman,
James Turner
Using Graphic Novels in
the Teaching and
Learning of Mathematics
and Physics

4:30–4:45 Kari Sandouka,
Miranda Vander Berg
The Antecedents of
Success for Developing
Core Skills

Samuel Alexander
Big-Oh Notation,
Elections, and Hyperreal
Numbers

Tanner Auch
The Great Integration

Jeremy Case,
Patrick Eggleton,
Evidence Matangi,
Mandi Maxwell
Intentional Community:
Fostering Faith . . .
Developing
Mathematicians

4:50–5:05 Michael Stob
What does P = 0.035
Mean?

Anika Homan,
Jocelyn Zonnefeld
Exploring the Min-Plus
and Max-Plus Finite
Tropical Semirings

Thomas Shifley
Incarnational
Mathematics: Teaching
Math as a Ministry

Sharon Robbert
Teaching Math
Technology

5:10–5:25 Stacy DeRuiter
Collaborative Tests in
Applied Statistics
Courses

Daniel Majcherek
Multiplicative Lattices:
A Brief Recount

Beth McCoy
Mentoring Christian
Women in STEM

Mike Janssen
Liberal Arts Mathematics
for Human Flourishing

5:30–5:55 Alana Unfried
Measuring Statistics
and Data Science
Attitudes: A Modern
Approach, and Why You
Should Get Involved

Justin Marks
Pursuing Discriminative
Statistics for Buried
Object Detection Using
Ground Penetrating
Radar

Jane Chunjing Ji
How has Mathematics
Helped Me Know God
Better?

Calvin Jongsma
Incorporating
Perspectival Elements
in a Discrete
Mathematics Course
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Parallel Session Schedule (Continued)

Friday, June 3
Session 4 Wilden 102 Wilden 103 Wilden 104 Lecture Hall
10:30–10:45 Kaitlyn Fitzgerald

Data Visualization Tips
and Tricks: Teaching
and Learning How to be
Better Communicators
of Data

Elliott Best
Topology and the
Trinity

Thomas J. Clark
Wonder Driven
Mathematical Modeling

Kim Jongerius
Mathematical Minds: a
Senior Seminar
Experience for the
Mathematically-Minded

10:50–11:05 Pete Kosek
Creating a statistical
Literacy Course for
Liberal Arts

Corban Harwood
Mathematics as a
Language of Creation

Michael Martinez
Virtual Class Activities
with Desmos

Sharon McCathern,
Elizabeth Rivas
Developing a Writing
Course on Mathematical
Vocations

11:10–11:25 Matthew Hawks
Redeeming Statistics
with DEI

Josh Wilkerson
Micah 6:8 Mathematics

Valorie Zonnefeld
Training Pre-Service
Teachers to Foster a
Growth Mindset Culture
in their Classrooms

Diana Schepens
The Infinite and the Void:
a Multidisciplinary
Approach to Integrating
Faith in the Calculus
Classroom

11:30–11:45 Michael Izbicki
Teaching Mathematical
Sciences in North Korea
as a Christian

Stoyan Dimitrov
Randomness and Faith
Again: Impressive
Bijections and
Pseudosecret Messages
in the Bible

Elizabeth DeWitt
Math Intersect
Creativity

Cameron Sweet
Christian Values in the
Mathematics Curriculum:
Incorporating Biblical
Principles in a Core
Mathematics Course
with Benedictine
Hallmarks for life with
God and Other People

ACMS would like to thank the following parallel session moderators:

Aisha Chen, Assistant Professor of Engineering and Computer Science, Azusa Pacific University
Thomas Clark, Associate Professor of Mathematics, Dordt University
Karl-Dieter Crisman, Professor of Mathematics, Gordon College
Edwin Ding, Associate Professor of Applied Mathematics, Azusa Pacific University
Kaitlyn Fitzgerald, Assistant Professor of Statistics, Azusa Pacific University
Daniel Hogue, Physics and Mathematics Faculty, Azusa Pacific University
Louise Huang, Assistant Dean of the College of Liberal Arts and Sciences, Azusa Pacific University
Paul Kaak, Executive Director of the Office of Faith Integration, Azusa Pacific University
Cory Krause, Assistant Professor of Mathematics, LeTourneau University
Sharon McCathern, Associate Professor of Mathematics, Azusa Pacific University
Bradley “Peanut” McCoy, Professor of Physics, Azusa Pacific University
Elizabeth Rivas, Mathematics Lecturer, Azusa Pacific University
Lu Ruan, Associate Professor of Computer Science, Azusa Pacific University
Amanda Sinner, Statistics and Mathematics Faculty, Azusa Pacific University
Kathryn Tickle, Mathematics Student, Azusa Pacific University
Dusty Wilson, Mathematics Faculty, Highline College
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Appendix 2: Abstracts

Abstracts for Invited Speakers

Saving Beauty—On Myshkin, Misery, Meaning, and Mathematics
Matt Delong, Wilden Lecture Hall, Wednesday, 7:45–8:45 p.m.

Over a decade ago, I was the lead author on the “Beauty” chapter of Mathematics Through the
Eyes of Faith. In that chapter, we made a case for seeing beauty in mathematics. Beginning
with some well-known examples, we articulated one definition of beauty, listed some standards of
beautiful mathematics, discussed the roles of objectivity and subjectivity, and framed a theological
perspective on what beauty is and what it is for. In the years since, my life experiences, particularly
periods of unexpected darkness and suffering, have deepened and changed many of my perspectives.
In this talk I will reflect on the chapter written and how I would write it differently now. I will also
invite us to puzzle together over Dostoevsky’s claim, “I believe the world will be saved by beauty,”
from the mouth of Prince Myshkin in The Idiot, and what it might mean for our mathematics,
teaching, theologizing, and living.

Ethics in the Age of AI: Navigating Emerging Technologies with
Biblical Wisdom

Jason Thacker, Wilden Lecture Hall, Thursday, 9:00–10:00 a.m.

Every day we are faced with deep and complex ethical challenges as new technologies are developed
and used. As we seek to navigate these issues in a pluralistic society, we must slow down to ask some
of the most fundamental questions about life in a digital age in order to understand how technology
is shaping everything about our lives including how we view God, ourselves, and the world around
us. This session provides a look at three major ethical concerns in light of AI—including privacy,
work, and war—before illustrating the Christian ethic of human dignity in a pluralistic society.
The Christian ethic of

Power in Numbers: The Rebel Women of Mathematics
Talithia Williams, Wilden Lecture Hall, Thursday, 7:15–8:15 p.m.

The movie “Hidden Figures” brought visibility to the lives of African American women who served
as NASA “human computers” in the 1960s, women who dreamed the impossible in a field where
their presence was lacking. When it comes to inspiring the future productivity and innovation of
our nation, mathematicians are on the front lines. In this talk, I’ll discuss my personal journey
as a woman of color in mathematics and share ways we can excite public interest in mathematics,
building upon the rich legacy of the Hidden Figures that have come before us. As we shift the fixed
mindset around mathematics ability, we can begin conversations that improve public perception of
STEM and bring people from all backgrounds into this important work.
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Abstracts for Invited Speakers (Continued)

Scam or Scriptural: Could Plant-Based Diets be God’s Healing Mechanism?
Talithia Williams, Wilden Lecture Hall, Friday, 9:00–10:00 a.m.

I grew up eating a traditional southern diet. Collard greens, macaroni and cheese, candied yams,
fried chicken, smoked pork ribs, you name it . . . I ate it. In the south, we greet perfect strangers
with a glass of sweet tea in one hand and a bowl of squash casserole in the other. We communicate
love with food. But what does God have to say about how we’re supposed to eat? Could a raw,
plant-based diet give our bodies the fuel it needs to cure itself? In this talk, I’ll share our personal
family journey towards better nutritional health and the data from scripture that supports a Genesis
1:29 lifestyle.

Always Known, but Rarely Loved: Facial Recognition Technology
and the Nature of Privacy

Jason Thacker, Wilden Lecture Hall, Friday, 5:00–6:00 p.m.

Highly sophisticated surveillance systems are being deployed to track, identify, and control people in
all parts of the world. These systems employ a number of technologies—including facial recognition,
artificial intelligence, and various forms of data tracking—which raise major ethical concerns with
centralized power in the hands of authoritarian leaders and personal privacy. Questions abound
over the ethical use of these technologies for the public good often without a solid foundation of
the nature and role of personal privacy in Christian ethics. Drawing on the concept of the imago
Dei and the Christian moral tradition, this session provides a foundation for ethical guidance in the
utilization of facial recognition tools that honor God and love our neighbors, upholding personal
privacy and protecting the innocent among us.

Child’s play: Mathematical Exploration and Exposition at MathPath
Matt DeLong, Wilden Lecture Hall, Saturday, 9:20–11;20 a.m.

MathPath is a four-week residential summer program for students aged 11-14 showing high promise
and interest in mathematics. As Academic Director of the camp, I hire faculty and oversee the
course offerings. I also help grade the Qualifying Test and run the Writing Plenaries at camp. In
this talk I will give an overview of the MathPath program, share some of my favorite Qualifying Test
problems from recent years, and discuss our approach to developing the campers as mathematical
writers.
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Abstracts for Pre-Conference Workshops (Tuesday-Wednesday)

Mathematics in Context: Its History, Philosophy,
and Connections with the Christian Faith

(Organizers: Bob Brabenec, Russell Howell, Richard Stout, Dusty Wilson)

The ACMS was founded in part to facilitate the discussion of issues related to the integration of
faith and learning in mathematics courses. Such a task seems to require some knowledge of the
foundational and philosophical issues in mathematics, as well as a sense of the historical background
that generated them. This workshop is designed to introduce topics that could be used throughout
the curriculum, but are generally not a part of most undergraduate or graduate programs. The
first day will focus on historical topics, primarily from the 18th and 19th centuries (e.g., the rise of
axiomatization, introduction of new geometries, development of complex numbers, work of Cantor
and set theory). The second day will explore philosophical issues, such as the implications of
Gödel’s theorems, a summary of classical philosophies of mathematics, and a discussion of current
issues in the philosophy of mathematics. No prior background in these topics is assumed.

A link to some documents provided for this workshop can be found by clicking here.

Integrating Ethics into your Statistics and Computer Science Courses:
Integrated Ethics Labs

(Organizers: Lori Carter, Catherine Crockett, Stacy DeRuiter)

Are you struggling to find ways to naturally integrate your faith into your teaching? Would you like
to become part of a project that will impact students well into their careers? The ongoing Integrated
Ethics Labs project provides professor- and student- friendly ethics labs that can be integrated
into computer science, data science and statistics courses throughout multi-year programs. We
believe, as have others before us, that ethics have become an increasingly important part of the
undergraduate education of students in these disciplines. We also believe that Christians should
be at the forefront of this movement. In this workshop, participants will:

• be introduced to the existing materials available at integratedethicslabs.org;

• experience several of the ethics labs that tie ethics directly to the subject matter;

• get tips on how to include ethics labs in a course or throughout a program;

• adapt and/or create ethics labs to be used in their own courses;

• practice presenting a lab and receive feedback;

• learn how to get involved in the Integrated Ethics Labs project.
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Abstracts for Contributed Presentations

Thursday, 10:30-10:55 a.m.

International Vaccine Allocation Models
Michael Veatch (Gordon College), Wilden 102

It’s always a plus when you can talk about your research in class—this one fits in a class on optimization. The
COVID-19 Vaccine Alliance (COVAX) has called for donations of vaccines to low-income countries largely
on the basis of equity. We propose a model to explore another motivation: reduced spread and reduced
opportunity for the virus to mutate to more infectious variants. The approach combines an epidemiology
model, a simple model of the occurrence of variants, and an optimization that chooses the international
vaccine allocations. This nonlinear optimization problem can be solved by iteratively solving linear problems.
A similar model, without the emergence of variants, has been applied to COVID-19 data for vaccine allocation
in the U.S. In contrast, we seek to show potential benefits of international vaccine allocation, but with a
simplified model that does not accurately predict the pandemic.

The First Step Towards Higher-Order Chain Rules for Abelian Calculus
Christina Osborne (Cedarville University), Wilden 103

One of the most fundamental tools in calculus is the chain rule for functions. Huang, Marcantognini, and
Young developed the notion of taking higher order directional derivatives, which has a corresponding higher
order iterated directional derivative chain rule. When Johnson and McCarthy established abelian functor
calculus, they constructed the chain rule for functors which is analogous to the directional derivative when
n = 1. In joint work with Bauer, Johnson, Riehl, and Tebbe, we defined an analogue of the iterated
directional derivative and provided an inductive proof of the analogue to the HMY chain rule. Our initial
investigation of this result involved a concrete computation of the case n=2, which will be presented in this
talk.

Innovative Assessments via Creative Projects
Sarah A. Nelson (Lenoir-Rhyne University), Wilden 104

After taking more traditional (standardized) tests as students, we tend to rely on such forms of assessment
as teachers. Over the years, I have been trying to find alternate forms of assessment that afford my students
a richer “exam” experience that is also more enjoyable. Ultimately, I want my students to form deeper
connections between something they know really well and/or enjoy very much and the material we are
covering in class together. So I (as a mathematics professor) started transitioning my traditional final exam
to a final project instead.

During this session, we will go through my journey creating and adapting assessments that promote and
encourage student creativity. I will share rubric(s) and samples of student work. Attendees will leave with
ideas for what types of products students are capable of producing as well as suggestions for creating effective
rubrics.

Restoring Faith: A Philosophy and Model for Faith Integration in Mathematics
Ricardo Cordero-Soto (California Baptist University), Wilden Lecture Hall

Accrediting visits have led California Baptist University to ask how each of its programs systematically inte-
grates faith into their respective disciplines. In the Department of Mathematical Sciences, we are replacing
the word “integration” with “restoration.” With a philosophy of Faith Restoration, we incorporate various
Faith Themes across all of our courses. These Faith Themes are to produce majors that have restored faith
into the thought and practice of the mathematical sciences. The philosophy and implementation of faith
restoration shall be discussed with specific examples.

ACMS Journal and Proceedings Page 337 23rd Biennial Conference



Abstracts for Contributed Presentations (Continued)

Thursday, 11:00-11:15 a.m.

Geometry as a Playground for Expanding our Horizons: A review
Kevin Vander Meulen (Redeemer University), Wilden 102

The book Shape is a popular book by Jordan Ellenberg published by Penguin Press in 2021 that
explores the “hidden geometry of information, biology, democracy, and everything else.” I will
provide a summary of the book, including some commentary on what the book has to offer.

Formal Differential Variables and an Abstract Chain Rule
Samuel Alexander (The U.S. Securities and Exchange Commission), Wilden 103

One shortcoming of the chain rule is that it does not iterate: it gives the derivative of f
(
g(x)

)
, but

not (directly) the second or higher-order derivatives. We present iterated differentials and a version
of the multivariable chain rule which iterates to any desired level of derivative. We first present
this material informally, then we discuss how to make it rigorous (a discussion which touches on
formal foundations of calculus).

Cultural Competency: Providing Equitable Math Instruction
through Cultural Relevance

India White (Big Ideas Learning), Wilden 104

Scores from the National Assessment of Educational Progress suggest that if current educational
practices in math classrooms remain the same, the achievement gap between Caucasians and African
descent demographics will be eliminated in approximately 217 years. To close the academic achieve-
ment gap for all students, teachers must be equipped with methods to conduct equitable instruction
that is culturally relevant. In this session, attendees will learn methods for providing cultural rel-
evance within specific academic settings. Participants will be empowered with strategies that will
engage students in a relevant manner as well as acquire pedagogy, perspective, and practices to
implement in the math classroom.

Thematic Approach to Program-Level Faith Integration Curriculum
Bradley “Peanut” McCoy (Azusa Pacific University), Wilden Lecture Hall

Though efforts at integrating faith with academic disciplines are often left to the judgment and
creativity of individual faculty, there are benefits to curricula that are coordinated throughout an
undergraduate program. Notably, program-level curricula have potential for more comprehensive
and cohesive development of students’ faith integration experiences. In this talk, I will present
a faith integration curriculum that focuses on four themes throughout an undergraduate physics
program: characteristics of scientists, nature of science, science in society, and theological impli-
cations. I will also explore how a similar approach might work in math or other disciplines with
generalized themes of vocation, nature of the discipline, societal impact and responsibility, and
theological implications.
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Abstracts for Contributed Presentations (Continued)

Thursday, 11:20-11:35 a.m.

Complex Analysis, Stability, and Cerebral Palsy
Adam Goodworth, Russell Howell (Westmont College), Wilden 102

Many people are not aware that complex analysis has applications in stability and control systems.
This presentation will discuss the general complex function theory that is the basis for the “Nyquist
Stability Criterion,” and how this construct was used recently in a Kinesiology study that involved
children with cerebral palsy.

Fibonacci-Type Identities for Second-Order Linear Recurrences
Jesús Jiménez (Point Loma Nazarene University), Wilden 103

We will present some generalizations of a few well known Fibonacci identities and use them to
estimate the period of the corresponding recurrence modulo a prime.

Surviving a Pandemic Using Alternate Assessments
Sarah Klanderman (Marian University), Marie Meyer, Michael Smith,

Brittany Stephenson, Cara Sulok (Lewis University), Wilden 104

The COVID-19 pandemic is one of the most unexpected global challenges of the early 21st century.
It has been devastating to healthcare systems and provided unprecedented challenges to educators
worldwide as on-ground classes were suddenly transitioned online. In addition to surviving an
unknown virus, educators had the additional challenge of determining how to continue to teach
and assess students during this new normal. In this presentation, we will share several assessment
practices we used in online and hybrid courses. We will include lessons learned from transitioning
“traditional” assessments, group projects, alternative/mastery exams, and oral exams to online and
hybrid classes. We will also provide a comparison of student surveys from pre- and post-March
2020 which include questions about test anxiety, growth mindset, and perceptions of learning
mathematics.

Reflections on Maddy’s Naturalized Epistemology of Mathematics
Cory Krause (LeTourneau University), Wilden Lecture Hall

Penelope Maddy is a respected philosopher of mathematics who has spent a significant portion
of her career pursuing questions related to the foundations of mathematics and set theory. In
particular, she has been motivated to investigate (from a naturalistic perspective) how it is possible
for set theorists to make progress in a field where the apparent objects of study are not empirically
accessible. While beginning with a realist perspective similar to Gödel’s, she eventually settled on
a position she believes grounds set-theoretic statements yet is free from ontological commitments.
In my talk, I will sketch the development of her views and give a (very modest!) assessment of
her current position. Finally, I hope to comment on some possible ways someone with a prior
commitment to theism might differ methodologically from her idealized “second philosopher” in
discerning the objectivity of set-theoretic statements.
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Abstracts for Contributed Presentations (Continued)

Thursday, 11:40-11:55 a.m.

TDA and the Housing Market
Lisa Hernández, Esther Lee (California Baptist University), Wilden 102

Topological Data Analysis (TDA) is a way to use the topological features found in visual represen-
tations of data in order to gain insights into possibly complex data. We will give a brief introduction
of TDA followed by an example of its application to the US housing market. Features derived from
TDA are useful in classifying and clustering time series and detecting breaks in patterns.

PreTeXt for Accessible Math Documents
Joseph DiMuro (Biola University), Wilden 103

A few years ago, my university started getting serious about accessibility. They announced that,
eventually, all course materials for all classes would need to be accessible to those with visual or
hearing disabilities. I panicked; how does one make math documents accessible to those with visual
disabilities? Fortunately, God redeemed my panic and led me to a new document-making system
in development: PreTeXt. In this talk, I will show some of what PreTeXt can do, and discuss my
plans for using it in the future.

To Grade or not to Grade: Testing the Waters of “Ungrading”
Rachel Grotheer (Wofford College), Wilden 104

The fall of 2020 brought a host of changes for everyone; for me, that included starting a job at a new
institution. After a lot of research into mastery and standards-based grading systems, and reflecting
further on my own teaching philosophy, I decided to make a fresh start at my new institution to
rework all my classes to use these systems for assessment. I have continued to refine these and
branch out even further into other types of “ungrading.” This talk outlines what ungrading is, why
I decided to try it, the various methods I’ve tried, and the challenges and benefits I discovered
along the way.

A Belief Expressionist Explanation of Divine Conceptualist Mathematics
David Freeman (University of Cincinnati Blue Ash College), Wilden Lecture Hall

Many have pointed out that the utility of mathematical objects is somewhat disconnected from their
ontological status. For example, one might argue that arithmetic is useful whether or not numbers
exist. We explore this phenomenon in the context of Divine Conceptualism (DC), which claims
that mathematical objects exist as thoughts in the divine mind. While not arguing against DC
claims, we argue that DC claims can lead to epistemological uncertainty regarding the ontological
status of mathematical objects. This weakens DC attempts to explain the utility of mathematical
objects on the basis of their existence. To address this weakness, we propose an appeal to Liggins’
theory of Belief Expressionism (BE). Indeed, we point out that BE is amenable to the ontological
claims of DC while also explaining the utility of mathematical objects apart from reliance upon
their existence. We illustrate these themes via a case study of Peano Arithmetic.
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AI and Writing: Laziness or Thoughtfulness?
Ken Arnold (Calvin University), Wilden 102

Phone keyboards and email apps offer us AI-generated suggestions of words and even complete phrases
to enter with a single tap or swipe. But these suggestions don’t just reduce physical effort; they reduce
cognitive effort as well, nudging writers towards quick and lazy platitudes. In contrast, God commands us
to use our words to communicate grace and truth, thinking of the needs of our neighbors above our own.
Could AI systems possibly encourage that sort of writing? I think the answer is yes, and that we can take a
“swords-to-plowshares” approach of re-forming existing AI technologies for this purpose. I will discuss some
of my ongoing work in this direction.

The Game of Cycles
Francis Su (Harvey Mudd College), Wilden 103

The Game of Cycles, introduced in my book Mathematics for Human Flourishing, is played on a simple
connected planar graph together with its bounded cells, and players take turns marking edges with arrows
according to a sink-source rule that gives the game a topological flavor. I first started playing this game
with Christopher Jackson, an incarcerated man who is a featured contributor to my book. With Chris and
several other mathematicians, we wrote a paper together about this game, and I’ll share some of the things
we discovered.

How to Discover (ALL) Divisibility Tests
Adam Hammett (Cedarville University), Wilden 104

Ever wonder how certain divisibility tests were discovered? Tests for primes—e.g., an integer is divisible
by 3 whenever the sum of its digits is—are well-known, but how would we “discover” this, and are there
others to be found? It seems an exhaustive analysis of so-called “block-truncation” divisibility algorithms,
and ways to construct them, is not present in a singular piece of number-theoretic literature or simply has
not been tackled. We present such an approach: Given an odd prime p different from 5, we show how to
discover infinitely many divisibility tests for p. Our argument rests only on p being relatively prime to 10,
and as such we may replace p by any positive integer m relatively prime to 10. Moreover, our analysis will
prove to be exhaustive in the sense that there could not possibly be other block-truncation divisibility tests.
Our results also extend to other bases.

Discovered or Invented: The Ontology of Mathematics
Ricardo Cordero-Soto (California Baptist University); Dusty Wilson (Highline College),

Wilden Lecture Hall

Where does mathematics come from? Is it discovered as claimed by realists or invented as per the nominal-
ists? The transcendent mystery seems too far-fetched to believe the latter and the former too dismissive of
the hard work of mathematicians. And then there is the problem of God and abstract objections. Into this
fray, we propose a new model for understanding mathematics; a logic-loop of Refinement, Invention, Discov-
ery, and Exploration. Leaning into an egalitarian approach to the philosophy of mathematics as well as the
philosophy of mathematical practice, this talk outlines a R.I.D.E. forward into discovery and invention.
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Engaging the Imperial Army
Kari Sandouka (Dordt University), Wilden 102

How do you engage your students in the classroom? Does this change when students are not a major
in your discipline? This presentation will cover a pedagogical game implemented in my Software
Engineering and in my Project Management courses to help engage students from a diverse set of
backgrounds. The presentation will be interactive to learn from each other by discussing what went
well and what could improve next time.

The Game of Cycles on Spiders and Hammocks
Bryant Mathews (Azusa Pacific University), Wilden 103

The Game of Cycles is a combinatorial game introduced by Francis Su in 2020 in which players
take turns marking arrows on the edges of a simple plane graph, avoiding the creation of sinks
and sources. Su and his collaborators have found winning strategies on cycle graphs with chords
and on graphs with certain types of symmetry. This talk will discuss winning strategies (Mathews,
McCathern, and Tickle) on hammock graphs with three strands as well as a proof (Mathews) that
player two can win on any 3-legged spider graph with legs of odd length. The latter proof uses a
notion of state isomorphism to decompose a game state into states of smaller pieces of a graph,
leading to nim-sum calculations with Grundy values.

A First Attempt at a Corequisite Course for Calculus I
Kristin A. Camenga (Juniata College), Wilden 104

Faced with two 40-student Calculus I sections when our typical cap is 30 and gaps in student
preparation exacerbated by the COVID pandemic, we implemented an optional 1-credit co-requisite
course for Calculus I in Spring 2022. The Calc I Lab course met once a week for two hours and
had an extended deadline that allowed students to add the course until after the first exam of the
semester. I will share about the structure and activities of the course, successes and challenges,
and adaptations for the future.

God and Mathematical Platonism
Daniel Rodman (Taylor University), Wilden Lecture Hall

Are numbers real? According to Mathematical Platonism, numbers and other mathematical objects
are real in the sense that they are unchanging, necessary, independent of minds, and outside of
space-time. Yet this might seem to be in tension with the Christian understanding of God as
the sovereign creator of the universe. We will briefly discuss three different models that Christian
philosophers have held which attempt to reconcile the apparent contradictions at the intersection
of Mathematical Platonism and theology.
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A Christian Field Guide to Technology for Engineers and Designers
Derek Schuurman (Calvin University), Wilden 102

This presentation will introduce a newly published book about faith and technology from Inter-
Varsity Academic Press (2022) titled A Christian Field Guide to Technology for Engineers and
Designers. An outline of the book along with the main themes and chapters will be summarized.

Voting on Cyclic Orders: Results and Ideas in Undergraduate Research
Karl-Dieter Crisman (Gordon College), Wilden 103

Sometimes it is hard to find topics for undergraduate research that are accessible to students with
very little background, while still providing the opportunity for seniors or graduate students to use
(and learn) quite advanced mathematics.

A discipline that does afford this is the mathematics of voting and choice. In this talk, we describe
the basic concepts and results of a multi-year project on voting on ways to sit around a dinner
table, or “cyclic orders.” Different students tackled this project equally well using simple sets and
functions, then using combinatorics and experimental mathematics, and finally even combining
linear algebra and groups in representation theory! Most importantly, ideas for other similar topics
for listeners to try will be given.

Partnered Problem-Solving as a Gateway to Active Learning
Chris Cyr (Covenant College), Wilden 104

For those teachers (like myself) who have only ever experienced lecture-style classrooms as students,
the idea of implementing more active learning strategies might seem daunting or even downright
scary. In this talk, I outline the development of a partnered teaching practice I used in my Calculus
2 and 3 classes from 2019-2021, and report on the results of using student group work more heavily
in my Calculus 2 class in spring 2022. I hope to highlight the benefits of these approaches while
being honest about the drawbacks, and to provide audience members with some useful ideas for
employing active learning strategies in their own classrooms.

Circular Reasoning in Theology and its Intersections with Mathematics
Chad Mangum (Clemson University), Wilden Lecture Hall

This talk supports the epistemological claim that all human reasoning is, at its core, circular. In
particular, we claim that questions which naturally arise in the fields of theology, philosophy, and
related disciplines, to the extent that they make claims of ultimate existence or ultimate reality,
are necessarily circular. Examples and analogies from mathematics will be given to enhance this
central claim.
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Reflections on Group Programming Projects in Computer Science Classes
Benjamin Mood (Point Loma Nazarene University), Wilden 102

Many computer science classes require students to do group programming projects. These projects
are necessary in order to teach students how to function as part of team in preparation for their jobs.
Unfortunately, group projects in computer science can often suffer from a variety of problems that
can affect both students and professors, including poor/difficult teammates, problems of grading
when it is unclear what happened in the group, non-interesting projects, difficulty in planning out
a long project, etc. This presentation will give a reflection of what has worked well, what didn’t
worked well and why not, and ideas for how to improve group computer science projects in your
future classes.

Ellipses in Taxicab Geometry
Nicholas Zoller (Southern Nazarene University), Wilden 103

The taxicab metric measures distance in the way that one does by walking north/south and
east/west on city blocks. Taxicab geometry is typically presented as an example of a non-Euclidean
geometry with an interesting metric in introductory courses in geometry and topology. Much is
known about taxicab geometry, beginning with the astonishing fact that taxicab circles are squares.
In this talk, we define and classify taxicab ellipses. Furthermore, we give formulas for both the
circumference and area of taxicab ellipses. The derivations of these formulas do not require mathe-
matical knowledge beyond Precalculus, so this research project illustrates the accessibility of taxicab
geometry to beginning researchers.

Student Support in Gateway Mathematics Courses: Academic Intercession
Shawn Wirts (Fresno Pacific University), Wilden 104

We review multi-year efforts to support Pre-Calculus and Calculus GE courses offered at Fresno
Pacific University, a private 4-year HSI in California’s San Joaquin Valley. Data includes instructor
guided high-support models and peer support models, such as traditional Supplemental Instruction,
in-class TAs, and hybrid roles.

A Tale of Two Mentors: G.H. Hardy and C.S. Lewis
Matt Lunsford (Union University), Wilden Lecture Hall

G.H. Hardy was a prominent British mathematician during the first half of the twentieth century. In
1940, Hardy published an essay defending his career choice of becoming a mathematician, A Math-
ematician’s Apology, which has become a definitive piece in the history of mathematics. C.S. Lewis,
a prominent British author, scholar of the English language, and Christian apologist, published his
autobiographical work, Surprised by Joy, in 1955. This talk will share the personal journey of how
this Christian mathematician has been influenced by both of these intellectual giants of the 20th
century.
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Using POGIL to Enhance Engagement and Improve Understanding
in the Classroom

Victor Norman (Calvin University), Wilden 102

Process-Oriented Guided Inquiry Learning (POGIL) is teaching and learning technique that has been proven
by research studies to improve students’ understand of material, enhance their engagement with the material
and each other, and improve students’ “soft-skills,” such as communication and collaboration. In this talk, I
will describe how POGIL works in the classroom, describe my experiences with it, and, if time permits, do
a POGIL activity with participants. I will conclude with describing what POGIL materials already exist,
and how one can get involved with the POGIL “movement” in Computer Science (and Mathematics and
Statistics).

The Nearly Universal, Easy-to-Use Level Comparison Test for Series
Bryan Dawson (Union University), Wilden 103

The use of infinitesimal methods in calculus can simplify computations for students, including the deter-
mination of convergence or divergence of a series. The level comparison test for series with nonnegative
terms is an example. Featuring a computation that is similar in difficulty to the test for divergence, this
test hinges on whether the reciprocal of the “omegath” term of the series lies in the “convergence zone” or
in the “divergence zone.” In this talk the test is described and demonstrated. (The level comparison test is
introduced in the textbook Calculus Set Free: Infinitesimals to the Rescue, Oxford University Press, 2022.)

Threshold Concepts in Quantitative Reasoning: Development and Impact
Judith Canner (California State University Monterey Bay), Wilden 104

In our teaching practice, we often identify “threshold concepts” that are consistently troublesome for our students,
but when they “get it” we see a transformation in their ability to understand the topic. In general, threshold
concepts are 1) transformative to learner thinking; 2) bounded by the discipline; 3) integrative with other concepts
4) irreversible once understood; and 5) troublesome for learners to understand. At Cal State Monterey Bay, we
recognize that threshold concepts in quantitative reasoning are not exclusive to mathematics and statistics courses
and we believe that a focus on threshold concepts in quantitative reasoning reinforces the transfer of knowledge
from general education mathematics and statistics to discipline-specific quantitative courses. We will share how
we identified five threshold concepts for quantitative reasoning through interdisciplinary faculty workgroups, their
definitions and examples, and the ways we use quantitative reasoning threshold concepts within our curriculum.

A Homily on Hardy’s Apology
Andrew Simoson (King University), Wilden Lecture Hall

An electrical engineer has asked me to write an introduction to his forthcoming book on The Mathematical Radio
which is all the mathematics including Maxwell’s equations on how the radio works. In that book–—as a literary
device–—he imagines, as it were, responding to G.H. Hardy who, in his 1940 famed A Mathematician’s Apology,
denigrated the realm of applied mathematics. Therein Hardy wrote (i) “Engineering is not a useful study for or-
dinary men.” (ii.) “There is the real mathematics of the real mathematicians, and there is what I call the trivial
mathematics—which includes its practical application, the bridges and steam-engines and dynamos.” (iii.) “Most
people can do nothing at all well.” (iv.) “Exposition . . . is work for second-rate minds.” In the 82 years since
Hardy made such claims, how might we respond to Hardy—imagining that he were alive today and his opinions had
remained unchanged? This proposed talk is a meditation on various open-ended rebuttal thoughts, which I hope may
prompt some lively ACMS discussion beyond this presentation.
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Rethinking the Software Engineering Code of Ethics
Using a Biblical Worldview Lens

Jeffrey H. Green, Marian Zaki (Houston Baptist University), Wilden 102

Many professional guilds have implemented a code of ethics to guide their members. In this presentation
we are going to consider one such code of ethics: The Software Engineering Code of Ethics and Professional
Practice by ACM/IEEE-CS. This code has some aspects which resonate with Christian ethics broadly and
can be rooted in biblical worldview. In addition, there are opportunities to explore places where Christian
worldview can amplify and elaborate the code. In this presentation we will highlight some ways that profes-
sors can teach the code in the context of Christian higher education so that students are both professionally
prepared and wise to the ways in which the secular world reflects God’s truth. Of particular interest will
be our role as stewards of creation, building a Scriptural understating of privacy, and of the principles of
Judgment and Discretion and how they can be applied while developing new software solutions.

Why Save the Best for Last? Introducing Calculus through Asymptotics
Troy Riggs (Union University), Wilden 103

In the traditional calculus textbook, reasoning about relative rates of growth or orders of magnitude is not
encouraged until well after the introduction of the exponential function. And a toolbox of rigorous techniques
for handling relative rates of growth usually waits for infinite series. Historically however, rates of growth and
infinite series were utilized to develop many of the results of the calculus. In this brief paper, I propose that
the notion of infinitesimals (now made rigorous) and Dawson’s method of approximation in the Hyperreal
numbers can be employed to introduce calculus students “on the front end” to asymptotic intuition without
compromising a rigorous approach to the material.

Mourning of a Mathematician
Saburo Matsumoto (College of the Canyons), Wilden 104

In 2018, my youngest child Erika passed away at age 21. As a Christian, as a father, and as a mathematician,
I struggled with many faith-related questions concerning her death while mourning and grieving with the
rest of my family. Where was God when Erika took her last breath? He could have stopped her from dying,
but why didn’t He? Where was He when she prayed? Did He not hear our cries and prayers? Although the
sudden loss was devastating and emotional pain has been excruciating, God taught me many lessons—from
mathematics, the society in general, and His Word—and even gave me a “peace that passes through all
understanding.” In particular, some mathematical concepts played a major role in healing the wounds. In
this presentation I will share some of these lessons and thoughts that have helped me stay close to Him
during this difficult time

Using Graphic Novels in the Teaching and Learning
of Mathematics and Physics

Jason Ho (Dordt University), Dave Klanderman (Calvin University),
Sarah Klanderman (Marian University), James Turner (Calvin University), Wilden Lecture Hall

Are you looking for innovative teaching strategies for geometry or other mathematics and physics courses?
If so, then join us for a discussion of several graphic novels and their potential for successful teaching and
learning at the high school and university levels. Find out how engaging stories, combined with mathematical
and scientific meaning found in both text and image, can help to excite students, enrich learning, and explain
mathematical concepts. We report on recent data collected from multiple mathematics and physics classes
that extend prior research on the use of graphic novels to teach English Language Arts (Boerman-Cornell
and Kim, 2020) and will inform a book focused on the STEM disciplines that is currently in development
(Boerman-Cornell, Ho, Klanderman, and Klanderman, in press).
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The Antecedents of Success for Developing Core Skills
Kari Sandouka, Miranda Vander Berg (Dordt University), Wilden 102

The authors examine antecedents of success on the Education Testing Service Proficiency Profile. The
authors use the ETS proficiency profile scores for matched pairs of students who took the exam in their
freshman and junior years of college. Exploring the pattern of general education courses taken by students
that increased their scores for the core skill areas (reading, writing, mathematics, and critical thinking) is
a focal point of the research. Other factors such as gender, discipline of study, and standard predictors
identified by research literature were included. The practical implications are to adapt to the test-optional
environment for higher education.

Big-Oh Notation, Elections, and Hyperreal Numbers
Samuel Alexander (The U.S. Securities and Exchange Commission), Bryan Dawson (Union University)

Wilden 103

When computer scientists use big-oh notation, they implicitly are using a nonstandard number system (as
in nonstandard analysis) without realizing it. We present an amusing thought experiment to illustrate what
would go wrong if one attempted to use real numbers in place of big-oh notation. Using an election analogy,
we introduce the hyperreal numbers and show that if one must replace big-oh notations with numbers, the
hyperreals are a better fit.

The Great Integration
Tanner Auch (Bethel University), Wilden 104

When considering how math and faith integrate, it’s quite natural to think of the two concepts as fairly inde-
pendent of each other. What should math look like for a Christian? We can use God’s revelations about His
broader purposes to help us seek out godly purposes for math. As Christians who view building the kingdom
of God as an ultimate concern, we can ask and hope to answer many questions about integrating our subject
and our faith. Math can serve to complement our Christian walks as we obey the Great Commandment, the
Great Commission, and the Great Requirement.

Intentional Community: Fostering Faith . . . Developing Mathematicians
Jeremy Case, Patrick Eggleton, Evidence Matangi, Mandy Maxwell (Taylor University),

Wilden Lecture Hall

So often students hinder their mathematical development by distancing themselves from the subject. By
simply trying to “meet the requirements,” students not only lose the benefits of exploring and struggling
and developing logical explanations as mathematicians, but they also deter their trust in God’s plan and
opportunity to serve others. By incorporating rituals and patterns to develop intentional community in the
classroom, opportunities to both foster faith and to accept a personal mathematical identity are encouraged.
This session shares the observations made by both students and faculty regarding their development in
both faith and mathematics as a result of efforts made to establish intentional community in non-major
mathematics classrooms. Our goal is to foster virtues that are both mathematical and scriptural as the
community works together.
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What does P = 0.035 Mean?
Michael Stob (Calvin University), Wilden 102

P values are commonly misunderstood. We only have to ask our students in introductory statistics to explain
what P=0.035 means to know that. They often tell us that this means that the probability that the null
hypothesis is true is 3.5%. This misconception is not confined to students as any cursory review of accounts
of research written for the “general public” will reveal. But there is a disguised version of this misconception
that is pervasive, even among “experts.” Namely, some experts believe that P = 0.035 is strong evidence
that the null hypothesis is false.

Exploring the Min-Plus and Max-Plus Finite Tropical Semirings
Jocelyn Zonnefeld, Anika Homan (Dordt University), Wilden 103

Recent work has characterized properties of algebraic structures by exploring their associated directed graphs,
which can be thought of as a visual representation of the structure’s Cayley tables. Our work expanded on
previous efforts regarding the directed graph of the finite tropical semiring. Building on the previous analysis
of the structure of the directed graph, we explore graph-theoretic implications of the minimum and maximum
definitions of tropical addition. We give formulas for the in-degree of vertices in the directed graphs and
the number of vertices with a given in-degree. We also analyze the connected components of the directed
graphs and present formulas for the number of connected components and the greatest common divisor of
the vertices in a given component. If time allows, we also discuss the cycles in connected components along
with the lengths of paths in a given directed graph.

Incarnational Mathematics: Teaching Math as a Ministry
Thomas Shifley (George Fox University), Wilden 104

The integration of faith in teaching mathematics has for me taken two forms: Using mathematics to point to
the order and beauty of God, and using the relationships formed from teaching a notoriously difficult subject
to mentor and disciple students. In this talk I will focus on the latter and share how I use my twelve plus
years of experience in the outreach ministry Young Life to inform how I approach teaching mathematics. Just
as Young Life stresses the incarnational ministry of Jesus, where “The Word became flesh and blood, and
moved into the neighborhood” (John 1:14 MSG), I emphasize the role of real and authentic relationships in
the classroom. I will share some of my experience, and simple, practical things I do to cultivate relationships
with students, where the goal is to share not just my knowledge, but my life with students.

Teaching Math Technology
Sharon Robbert (Trinity Christian College), Wilden Lecture Hall

At Trinity Christian College, we have tried two different ways to help our math majors understand how
to use math technology appropriately: infused “just in time” within specific courses and as a stand-alone
comprehensive class. In this presentation, I will explain the pros and cons of each approach and share both
course design strategies for others to try.
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Collaborative Tests in Applied Statistics Courses
Stacy DeRuiter (Calvin University), Wilden 102

Findings from the science of teaching and learning, statistical education guidelines, and professional
requirements all support the practice of integrating collaborative analysis of real-world datasets in
applied statistics courses. Group project reports are one obvious way to assess this kind of work,
but in courses where collaborative work features prominently and tests are used for assessment, are
there creative ways to incorporate it into tests in a way that still measures and rewards individual
effort and learning? I will describe a scheme for collaborative take-home statistics tests that I have
trialed in the past two academic years, including technical implementation details including using
Rmarkdown, RStudio and GitHub Pages to streamline the process; examples and lessons learned;
and (pending IRB approval for Spring 2022 surveys) student feedback on the experience.

Multiplicative Lattices: A Brief Recount
Daniel Majcherek (Liberty University), Wilden 103

The study of complete lattice monoids as an abstraction of ideal theory in commutative rings
began with Krull’s “Axiomatische Begrundung der allgemeinen Idealtheorie, Sitzungsbericht der
physikalisch-medizinischen Gesellischaft zu Erlangen,” 56 (1924), 47-63. This was later further
developed by M. Ward and D.P. Dilworth. In this talk, I will give a brief recounting of the history
and development of multiplicative lattices, current work being done regarding these structures, and
my personal contributions.

Mentoring Christian Women in STEM
Beth McCoy (Azusa Pacific University), Wilden 104

This panel will invite women in Math, Physics, and Engineering, ranging from recent graduates
to mid-career women with experience as mentors, to discuss mentoring strategies and needs of
Christian women in STEM fields. Based on our experiences, typical guidance from mentors neglects
the frequent question of “What does it mean to be a Christian woman in my field?”, including the
wide variety of options related to academic, family, and career considerations that question entails.
The panel will discuss approaches that explore options without prescribing answers in order to help
women to thrive in these fields.

Liberal Arts Mathematics for Human Flourishing
Mike Janssen (Dordt University), Wilden Lecture Hall

In his retiring address as president of the MAA in 2017 (and the subsequent book released in 2020),
Francis Su laid out a vision for mathematics as integral to a life of flourishing. In this talk, we will
describe and share resources for an inquiry-oriented liberal arts math course informed by the vision
Su describes.
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Measuring Statistics and Data Science Attitudes:
A modern Approach, and Why You Should Get Involved
Alana Unfried (California State University Monterey Bay), Wilden 102

Research and experience tell us that student attitudes matter when learning statistics. Educators
have been studying student attitudes toward statistics for decades, but lacking modern instruments
for assessing attitudes and a mechanism for studying attitudes at the national scale. These needs
are met with the NSF-funded grant “Developing Validated Instruments to Measure Student/Faculty
Attitudes in Undergraduate Statistics and Data Science Education” (DUE-2013392). Through the
grant, my research team is creating a family of validated instruments to measure student attitudes
toward statistics or data science, instructor attitudes toward teaching statistics or data science, and
the learning environment. I will describe the goals of the grant, the process for developing the six
proposed instruments, and findings from our Spring 2022 national administration of the Student
Survey of Motivational Attitudes toward Statistics (S-SOMAS). I encourage anyone who teaches a
statistics or data science class to get involved with Fall data collection.

Pursuing Discriminative Statistics for Buried Object Detection
Using Ground Penetrating Radar

Justin Marks (Biola University), Wilden 103

Ground penetrating radar arrays are used to detect and classify buried objects, such as utility pipes
and squirrel holes. To enhance detection and classification algorithms, we consider a handful of
statistics computed from ground image datacubes. These statistics include total variation, singular
value metrics, and distance between intensity distributions. This work is in collaboration with
Jason Wilson at Biola

How has Mathematics Helped Me Know God Better?
Jane Chunjing Ji (University of Louisiana at Monroe), Wilden 104

As someone who converted from an atheist Chinese to a re-born Christian, I found mathematics
never hindered me from knowing God (while many of my non-Christian friends think it should).
Surprisingly, it has helped me to digest and then appreciate many “choking points” in the Bible.
This may not be a surprise for a mature Christian though. God is omniscient; even though the
Bible is surely not a math textbook, it has plenty of math ideas embedded. However, here I am not
only referring to the numbers and geometric shapes mentioned in the Bible. In this presentation,
I will share several specific examples on how mathematics concepts (such as ratio, rate of change,
set, function, etc.) helps me interpret His words and then hear His voice more clearly. I believe
these examples can be used to integrate the teaching and learning of God’s Word with mathematics.
Furthermore, I hope my attempt could serve as a small springboard and contribute to a pedagogical
supplementary to many Christian scholars’ (e.g., Vern Poythress, Russell Howell, etc.) great work
of connecting God and mathematics on metalevel (Howell, 2015).
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Incorporating Perspectival Elements in a Discrete Mathematics Course
Calvin Jongsma (Dordt University), Wilden Lecture Hall

This talk explores some ways I’ve incorporated religious, historical, philosophical, and foundational
perspectives in an intermediate level discrete mathematics course, drawing from my 2019 textbook
in Springer’s Undergraduate Texts in Mathematics series, Introduction to Discrete Mathematics
via Logic and Proof. As a life-long member of ACMS from its inception and as someone with a
professional background in the history and philosophy of mathematics as well as in mathematics
proper, I’ve tried to incorporate perspectival elements in every college mathematics course I taught.
Teaching a discrete mathematics course to a diverse audience of students over three decades en-
couraged me to develop my own material and allowed me to incorporate elements that gave voice
to my perspectival interests. Fortunately, while Springer put constraints on the size of my text
and forced me on several occasions to advocate for my goals and approach, the end result was a
mathematics text that still represented my perspectival passions.

Friday, 10:30-10:45 a.m.

Data Visualization Tips and Tricks:
Teaching and Learning How to be Better Communicators of Data

Kaitlyn Fitzgerald (Azusa Pacific University), Wilden 102

Data visualization offers an exciting and relevant entry point to get students thinking critically
about data and the ways they consume and communicate information in their everyday lives.
Data visualization has become one of the most ubiquitous mediums through which we consume
information. Yet, there are known cognitive pitfalls and difficulties in statistical reasoning that are
often not taken into account when visualizing data or communicating statistical evidence.

Drawing on literatures in cognitive science, information visualization, and uncertainty communica-
tion, I discuss these common pitfalls as well as data visualization best practices for more effective
communication. I briefly report findings from a randomized experiment where colleagues and I
used simple data visualization principles to improve how statistical evidence is communicated to
policy-makers in education. I then discuss implications for our own communication practices as
researchers and educators and highlight activities that can be used in the classroom to expose
students to data visualization best practices.
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Friday, 10:30-10:45 a.m. (Continued)

Topology and the Trinity
Elliot Best (Dallas Theological Seminary), Wilden 103

God has revealed himself in the world, and through the lens of faith, we find his glory all throughout.
The doctrine of the Trinity has a central and significant role in our profession of faith. Therefore,
as we live, exploring and interpreting our world, we eagerly expect to find reflections of Trinitarian
glory. Mathematics, the enjoyment of God’s patterns, has its place in that great symphony of
praise, and, with regard to the Trinity, topology might be it’s first chair. Whereas most texts
first introduce topology as the strange world it envisions, then present a formal definition, and
finally explore that definition through examples, a careful construction of the definition out of the
geometric perspective more clearly reveals the nature of topological thinking and opens the door
for speculating as to how the unity, diversity, and mutual indwelling of the Godhead shine through
the topological world.

Wonder Driven Mathematical Modeling
Thomas J. Clark (Dordt University), Wilden 104

Mathematics that begins in wonder is more likely to draw in the attention of students and help them
to find value and meaning in the topic. In calculus and differential equations courses, many modeling
topics can begin with an appeal to students’ curiosity about how some physical phenomena works.
Rooting this mathematical curiosity further in a robust doctrine of Creation further reveals how
Faith is inherently relevant to mathematics. Modeling then becomes an opportunity to explore the
quantitative structures of God’s world. In this presentation we will explore how to build lessons on
the foundation of wonder with several examples outlined in the contexts of calculus and differential
equations.

Mathematical Minds: a Senior Seminar Experience for the
Mathematically-Minded

Kim Jongerius (Northwestern College), Wilden Lecture Hall

This talk will present organizational details of a senior seminar with a calculus II prerequisite and
a charge to help students synthesize their collegiate careers at a strongly faith-based institution.
We’ll look at a current syllabus, talk a bit about the evolution of the course, and hear student
feedback about their experiences in the course.
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Friday, 10:50-11:05 a.m.

Creating a Statistical Literacy Course for Liberal Arts
Pete Kosek (Sterling College), Wilden 102

A few years ago, Sterling College created a new mathematics general education course designed for
a liberal arts education called, “Introduction to Statistical Reasoning.” This course is designed for
the average college student to become informed consumers of statistics. This talk will go through
the creation, implementation, and feedback from this course.

Mathematics as a Language of Creation
Corban Harwood (George Fox University), Wilden 103

Mathematics bridges the gap between known empirical measurements and burgeoning scientific the-
ory, allowing us to learn more about God’s creation and character as we reason through our mind
and senses. Believing in a mindful Creator God, Galileo Galilei resisted the Catholic Church’s dog-
matic views on science and championed the use of experimentation in understanding the universe.
Yearning to glorify God through the earnestness of his scientific studies, James Clerk Maxwell
brought about the second great unification of physics by binding together a wide range of exper-
imental results. Drawing insight from Maxwell’s equations for light, Erwin Schrödinger used the
language of partial differential equations to develop quantum mechanics as a deeper understanding
of atomic measurements and the periodic table of elements.

This talk will highlight mathematicians, scientists, philosophers, and theologians who have contem-
plated the role of mathematics in understanding God’s Creation. We will focus on the way that
mathematical models bridge disciplines and connect fundamental science to public facts—all while
being inherently flawed–and discuss what that means to us as human beings and mathematicians.

Virtual Class Activities with Desmos
Michael Martinez (Charleston Southern University), Wilden 104

As many schools have switched to virtual and hybrid classroom environments, it is becoming
necessary to offer interactive classroom activities that students can do online. In this talk, we will
introduce the Desmos activity building system and show how it can be used to transform your
in-person activities into online activities.

Developing a Writing Course on Mathematical Vocations
Sharon McCathern, Elizabeth Rivas (Azusa Pacific University), Wilden Lecture Hall

APU’s general education curriculum includes a sophomore-level writing course intended to be rele-
vant to students’ major field of study, in which students analyze texts and write in several genres in
their major and related disciplines. We developed a new course for math and applied math majors
which fulfils this requirement and also includes a significant faith component. Course readings and
assignments are focused on developing students’ understanding of their callings as Christians and
as mathematicians, in addition to building awareness of career options. I will discuss the goals and
implementation of the course, as well as student reactions from the first time it was taught.
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Friday, 11:10-11:25 a.m.

Redeeming Statistics with DEI
Matthew Hawks (U.S. Naval Academy), Wilden 102

Three major pioneers in the field of statistics promoted eugenics. How can Christian statistics
instructors overcome this immoral foundation and attract students “from every nation, from all
tribes and peoples and languages?” In this talk, gain three tangible classroom instruction tools
you can use next semester! (1) Formulate a course policy that explicitly recognizes past exclusions.
Such a statement addresses concerns that a student may not “belong” in the field. (2) Ask a
daily question to nurture respect for each individual. Students will open up to their peers and
have opportunities for daily validation. (3) Incorporate a simple biographical assignment to expose
students to contributions from underrepresented individuals. Help students recognize that inherent,
immutable characteristics are not predictors of future success in statistics. Redeem statistics and
welcome the next generation to the field!

Micah 6:8 Mathematics
Josh Wilkerson (Regents School of Austin), Wilden 103

This presentation will unpack how the discipline of mathematics, rightly understood in a Christian
context, equips students to do justice, love kindness, and walk in humility with God (Micah 6:8).
This presentation will expand on the experience of Regents School of Austin in shaping the philos-
ophy of its mathematics program around several key works: Math for Human Flourishing, Citizen
Math, Building Thinking Classrooms, and Beauty for Truth’s Sake. Several practical examples
from the Regents curriculum will be shared to demonstrate how the ideal of integrating faith and
Christian service into the math classroom becomes a reality that is meaningful for students.

Training Pre-Service Teachers to Foster a Growth Mindset Culture
in their Classrooms

Valorie Zonnefeld (Dordt University), Wilden 104

Research demonstrates that a student’s mindset plays an important role in achievement and that
mindsets are domain specific. Carol Dweck claimed that mathematics needs a mindset makeover
and has shown that teachers can foster a growth mindset through their pedagogical choices. This
paper shares how one university trains preservice teachers in mathematics pedagogies that are key to
fostering a growth mindset. These practices include educating students on brain function, equitable
access, metacognition strategies, feedback practices, the importance of productive struggle, and
learning from mistakes.

ACMS Journal and Proceedings Page 354 23rd Biennial Conference



Abstracts for Contributed Presentations (Continued)

Friday, 11:10-11:25 a.m. (Continued)

The Infinite and the Void: a Multidisciplinary Approach
to Integrating Faith in the Calculus Classroom

Diana Schepens (Whitworth University), Wilden Lecture Hall

Calculus curriculum is often used as prerequisite material for upper division math and science
courses. As such, it can be difficult to find space in the curriculum to accomplish intentional faith
integration activities or assignments. The concepts of zero and infinity are intricately linked to
both faith and the development of calculus. We propose that rather than trying to find space
for explicit faith integration content, instructors adopt an implicit multidisciplinary approach to
the presentation of the calculus curriculum so that faith integration can be woven together with
calculus throughout an entire semester. This talk will give concrete ways for instructors to shift
to a multidisciplinary perspective and examples of faith integration that can be used throughout a
typical calculus curriculum.

Friday, 11:30-11:45 a.m.

Teaching Mathematical Sciences in North Korea as a Christian
Michael Izbicki (Claremont McKenna College / PUST), Wilden 102

The Pyongyang University of Science and Technology (PUST) is the only foreign run university
in North Korea. It is founded on explicitly Christian principles, and most of the faculty are
Christian. But North Korea has a tumultuous relationship with Christianity. The government
blames Christians for hundreds of atrocities, and Christianity is notoriously repressed in the country.
In this talk, I will present why Christian faculty like myself feel called to work with North Korea,
and how we navigate the spiritual and political tensions on the Korean Peninsula.

Randomness and Faith Again:
Impressive Bijections and Pseudosecret Messages in the Bible

Stoyan Dimitrov (University of Illinois at Chicago), Wilden 103

The real world governs statistical laws derived under the assumption of complete randomness.
Inspired by the JMM 2021 talk of Randy Prium, we will discuss one more time how the believe in
God is compatible with this fact. We will show some impressive correspondences in the Bible, as
well as some “secret messages” in it (known as the Bible code) rebutted by Ramsey theory.
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Friday, 11:30-11:45 a.m. (Continued)

Math Intersect Creativity
Elizabeth DeWitt (Trinity Christian College), Wilden 104

Many mathematicians would describe ourselves and our work as creative. Helping students at all
levels develop their own mathematical creativity can be both one of the most challenging and most
rewarding aspects of teaching. And yet, non-mathematicians do not always see the overlap between
math and creativity. I plan to explore ways mathematicians see creativity in the hopes that the
such discussions lead us to be better communicators of the intersection.

Christian Values in the Mathematics Curriculum:
Incorporating Biblical Principles in a Core Mathematics Course
with Benedictine Hallmarks for Life with God and Other People

Cameron Sweet (St. Martin’s University), Wilden Lecture Hall

Many of the hallmarks of Christian education identified in the Bible by Benedict of Nursia fit natu-
rally in mathematics curriculum. Successes and challenges to incorporating Benedictine Hallmarks
were considered from a newly revised Core course on Mathematics in Modern Society. Multiple
methods were adopted to integrate these values into the course. Short readings from scripture and
mathematics literature that related to the campus values were posted on the course webpage for
discussion each week. In-class activities included reflective exercises on applying these values in
mathematics. Community was built through these activities as students listened to each other’s
ideas and techniques. Hospitality was modeled to the instructor’s classes through office hours
held in the tutoring center. A term paper requiring students to describe mathematics involved
in their hobby or area of study encouraged many to practice stewardship of resources using their
mathematical knowledge or to express mathematics relevant to their cultures.
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